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ABSTRACT 

Electricity demand forecasting plays a crucial role in the planning and operation of power 

systems. This study aims to enhance the accuracy and generalization capability of electricity demand 

forecasting to improve the efficiency of electricity production, distribution, and utilization. In this 

research, a high-performance electricity demand forecasting model is constructed by introducing 

innovative designs, including ConvTrans models, attention mechanism, and the word2vec module. 

Through comparison experiments on multiple public datasets, our model, when compared to six 

baseline models, demonstrates significant improvements in performance metrics such as MAE, R², 

Pearson Correlation Coefficient, and F1-score. These results validate the superior performance of the 

proposed model in electricity demand forecasting tasks and affirm its high robustness and 

generalization capabilities. 
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1 Introduction 

Electricity demand forecasting [1] plays a crucial role in the planning and operation of power 

systems, with its accuracy directly impacting the effective utilization of electrical energy and the 

stable operation of the system [2, 3]. Firstly, accurate electricity demand forecasting optimizes the 

scheduling and operation of power systems, ensuring an adequate power supply to meet the 

continuously growing demand. This not only contributes to enhancing the reliability of power systems 

but also reduces excessive reliance on backup power generation units, lowering operational costs, and 

improving overall efficiency. Secondly, precise electricity demand forecasting is essential for the 

integration and management of renewable energy sources such as wind and solar power [4]. 

Renewable energy sources exhibit characteristics of instability and intermittency, with their 

generation influenced by various factors, including weather conditions. By integrating weather data, 

quarters, holidays, and other influencing factors, improving the accuracy of electricity demand 

forecasting enables better adaptation to the volatility of renewable energy sources [5]. Additionally, 

through accurately predicting electricity demand, it becomes possible to better coordinate the 

combination of traditional and clean energy sources, minimizing reliance on high-carbon energy 

sources [6]. This contributes to achieving carbon neutrality goals for power systems [7], mitigating 

the impacts of climate change, and advancing the development of green and sustainable energy [8]. 
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The application of deep learning techniques in electricity demand forecasting [9] significantly 

enhances the performance and accuracy of predictive models, providing more reliable decision 

support for power system planning and operation. Deep learning , with its powerful feature learning 

and pattern recognition capabilities [10], demonstrates immense potential in the field of electricity 

demand forecasting. Firstly, deep learning models can automatically extract complex non-linear 

features from extensive time-series electricity data [11], capturing latent factors influencing 

electricity demand. This end-to-end learning approach helps circumvent the laborious process of 

manual feature extraction, allowing models to better adapt to the dynamic changes in power systems. 

Secondly, the widespread use of deep learning techniques such as recurrent neural networks (RNNs) 

[12] and long short-term memory networks (LSTMs) [13] enables models to capture long-term 

dependencies within time series data. This is crucial for data with temporal characteristics, effectively 

addressing the challenges of capturing long-term influences that traditional methods struggle with. 

Additionally, deep learning structures such as convolutional neural networks (CNNs) [14] exhibit 

significant advantages in handling spatial information related to electricity demand, such as the 

impact of geographical locations. The introduction of deep learning enables models to consider 

multiple dimensions of influencing factors comprehensively, improving the global and holistic nature 

of predictions. Deep learning models also demonstrate superior performance in handling multi-source 

heterogeneous data [15], integrating information from various dimensions such as weather data, 

socio-economic indicators, and seasonal factors to capture the complex relationships influencing 

electricity demand more accurately. Moreover, attention mechanisms [16] within deep learning 

technologies allow models to focus more on crucial time points or specific factors contributing 

significantly to electricity demand, enhancing the adaptability of the model across different time 

scales. The widespread application of deep learning technologies in electricity demand forecasting 

also holds promise for achieving intelligence and adaptability within power systems. Through end-

to-end learning on large-scale, high-dimensional data, deep learning models continually optimize 

their structures, gradually adapting to new patterns and changes in power system operations. This 

provides a more flexible and advanced tool for future planning and management of power systems. 

In summary, the application of deep learning techniques in electricity demand forecasting brings 

significant significance in improving prediction accuracy, adapting to the complex and dynamic 

environment of power systems, and comprehensively considering multi-source information. Its 

introduction not only propels advancements in research and practices in electricity demand 

forecasting but also lays a solid foundation for constructing more intelligent and efficient power 

systems. Five deep learning models commonly used in the field of electricity demand forecasting 

include: 

1. AutoRegressive Integrated Moving Average (ARIMA) [17]: ARIMA utilizes autoregressive 

and moving average components in time series analysis to forecast future electricity demand based 

on historical data [18]. Its advantage lies in its suitability for short-term predictions, excellent 

performance in capturing seasonality and periodicity, and its simple and interpretable model structure. 

2. Support Vector Machine Regression (SVR) [19]: SVR employs a kernel function for non-

linear mapping, seeking an optimal hyperplane for non-linear regression, making it suitable for 

capturing complex non-linear relationships in electricity demand. Its strengths include robustness 

against outliers, strong generalization performance, and applicability to high-dimensional data. 

3. Random Forest Regression [20]: Random Forest combines multiple decision trees to make 

predictions, utilizing voting to decide the result. It is well-suited for capturing various factors 

influencing electricity demand. Its advantages include high accuracy and robustness to noise. 
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4. Recurrent Neural Network (RNN) [21]: RNN captures long-term dependencies in time series 

by leveraging a recurrent structure, making it suitable for modeling dynamic changes in electricity 

demand. Its advantages lie in its sensitivity to temporal patterns and its ability to capture complex 

historical patterns. 

5. Convolutional Neural Network (CNN) [22]: CNN processes spatial correlations through 

convolutional operations, particularly useful for considering the impact of factors like geographical 

location on electricity demand. Its advantages include expertise in handling spatially rich data, 

making it suitable for multidimensional information processing. 

This study collected data encompassing various influencing factors, including historical demand 

data, weather information, quarters, holidays, and dates. These factors were integrated into a single 

dataset, and the temporal alignment of information was performed. Subsequently, for each 

influencing factor, Word2Vec models [23] were employed to embed weather, quarters, holidays, and 

months separately, learning distributed representations for each factor. The historical load data was 

treated as a time series, employing a sliding window method [24] to generate Word Embeddings for 

the temporal data. In the subsequent Encoder layers, the encoder structure of the Convolution 

Transformer model (ConvTrans) [25, 26] was utilized to process all embedded sequences. Multiple 

layers of ConvTrans model were then employed to handle information at different abstraction levels. 

Simultaneously, an Attention mechanism was incorporated, allowing the model to attend to complex 

relationships between various influencing factors, facilitating a more comprehensive capture of their 

impact on the changes in electricity demand. 

The three main contributions of this study are as follows: 

1. Integration and Alignment of Multifactor Data: This study integrated various key factors, 

including historical load, weather, quarters, holidays, and months, into a comprehensive dataset. 

Through temporal alignment of this data, consistency and comparability within the model were 

ensured, enhancing predictive accuracy. 

2. Word2Vec-Based Multifactor Embedding: The study employed Word2Vec models to embed 

each influencing factor, learning distributed representations for each. This approach enables the 

model to better comprehend and utilize the semantic information of each factor, thereby improving 

its ability to model complex relationships. 

3. Multilayer ConvTrans Structure and Attention Mechanism: The study introduced an encoder 

structure to process embedded sequences through multiple layers of ConvTrans model, addressing 

information at various abstraction levels. The incorporation of an Attention mechanism allows the 

model to comprehensively capture intricate relationships among different factors, enhancing its 

nuanced understanding and predictive capabilities regarding changes in electricity demand. 

The structure of this paper is outlined as follows. Firstly, Section 1, the introduction, provides 

the background and motivation for the research. Section 2 conducts an extensive literature review, 

presenting existing knowledge related to the issue of electricity demand forecasting. Section 3, the 

methodology, elaborates on the data collection process, the design principles of predictive models, 

including the innovative integrated Word2Vec, attention mechanism and ConvTrans layers. Section 

4, the results, presents the outcomes of simulation experiments using some public datasets and 

evaluates the performance of the models, with an accompanying analysis of the experimental results. 

Section 5, the discussion, summarizes the research, encapsulates the key findings again, underscores 

the contributions of this study, and suggests future research directions based on identified gaps in the 

study. 
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2 Related works 

2.1 Word2vec Embedding Method 

The Word2Vec embedding technique is a neural network-based word embedding method 

designed to map words to vectors in a high-dimensional space, where semantically similar words are 

represented by vectors that are closer in space. The core idea behind this technology is to learn the 

semantic representation of words by leveraging contextual information, ensuring that words with 

similar meanings have analogous representations in the vector space. One application of Word2Vec 

in the field of power systems involves embedding various influencing factors, such as weather, 

seasons, etc. By representing these factors as Word2Vec vectors, the model gains a better 

understanding of the semantic relationships between them, thereby more accurately capturing their 

impact on electricity demand. Another application lies in the embedding of historical load data. By 

embedding historical load data into the Word2Vec vector space, the model acquires a semantic 

representation of load data, enhancing its understanding of load trends and periodic variations. This 

forms a crucial information foundation for constructing more precise electricity demand forecasting 

models. Additionally, Word2Vec technology can be employed for the integration of multimodal 

information. Given the diverse and multi-sourced nature of information in power systems, including 

textual descriptions and numerical data, Word2Vec facilitates the unification of these different data 

types into a single vector space. This enables the model to have a more comprehensive and consistent 

information perspective, aiding in better understanding and utilization of various data sources, 

thereby improving the overall performance of forecasting models. [20] 

The continuous distribution assumption of Word2Vec further enhances its applicability in power 

systems. In electricity demand forecasting, the continuity of historical data is crucial for 

understanding trends in load variations. By learning Word Embeddings from historical load data, the 

model can better capture these trends, ultimately improving the accuracy of predictions regarding 

future demand changes. 

2.2 Transformer Model for Time Series Data Forecasting 

The Transformer model is an advanced neural network structure designed for time series data 

prediction, initially crafted for natural language processing [27]. Its successful applications in fields 

like electricity demand forecasting highlight its broad adaptability. The model's core principles 

encompass self-attention mechanism, multi-head attention, positional encoding, residual connections, 

and layer normalization. The self-attention mechanism enables the model to allocate different 

attention to various parts of the input sequence, aiding in capturing long-range dependencies. Multi-

head attention, through parallel processing of multiple heads, empowers the model to learn features 

at multiple levels and types. Positional encoding introduces position information of elements in the 

input sequence, aiding in handling temporally ordered time series data. Residual connections and 

layer normalization enhance the model's training stability. In electricity demand forecasting tasks, the 

Transformer model demonstrates distinct advantages. Its parallelism facilitates efficient processing 

of long sequences, while the capability to capture global information contributes to a more accurate 

understanding of overarching factors like seasonality and periodicity. Additionally, the model 

exhibits strong adaptability to sequence lengths, allowing flexible handling of inputs across different 

time scales. Its straightforward structure and scalability enable researchers to tailor the model 

according to task requirements, meeting specific demands in electricity demand forecasting. [28] 
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However, despite the evident advantages of the Transformer model in electricity demand 

forecasting tasks, several challenges and limitations persist. Firstly, the model's computational 

complexity, particularly for large-scale time series data, may result in high training and inference 

costs, posing challenges for real-time applications and resource-constrained environments. Secondly, 

the model may be sensitive to noise and outliers in the input sequence, lacking robustness to handle 

anomalous data. Furthermore, while the model generally handles long-term dependencies well, 

challenges may arise in extreme cases, leading to gradient vanishing or exploding issues. Additionally, 

the Transformer model may not perform well in training with small sample data, making it prone to 

overfitting. In electricity demand forecasting tasks, where data for specific regions or time points may 

be limited, this could result in suboptimal generalization performance on such data. Addressing these 

challenges provides avenues for further research to enhance and optimize the Transformer model for 

the specific requirements of electricity system applications. 

2.3 Attention Mechanism for Multi-Source Data Fusion 

The attention mechanism [29]is an advanced neural network structure designed for handling 

multi-source data fusion tasks. Its core principle involves parallel processing of input data through 

attention mechanism, focusing on capturing different feature relationships. In the context of data 

fusion for electricity demand prediction tasks, this mechanism demonstrates significant advantages. 

Firstly, the attention mechanism exhibits powerful capabilities in handling multi-modal data fusion. 

In electricity demand prediction tasks, various data sources contribute to factors such as weather, 

seasonality, holidays, among others, and these factors may exist in different forms. The attention 

mechanism effectively integrates these heterogeneous data sources, enabling the model to 

simultaneously focus on key information from each data source that has a significant impact on 

demand. This flexibility enhances its adaptability, allowing it to handle the complex multi-modal 

information present in power systems. Secondly, the mechanism excels in flexibility and 

generalization capabilities. Its ability to process multiple source data in parallel provides the model 

with increased flexibility to adapt to the heterogeneity among different data sources. This enhances 

the model's generalization ability to new data and diverse conditions, contributing to its adaptability 

to dynamic changes in power systems. This generalization capability is particularly crucial in 

electricity demand prediction, given the various influencing factors and changing conditions. Thirdly, 

the attention mechanism can capture feature relationships at multiple hierarchical levels. In electricity 

demand prediction, there exist short-term and long-term relationships among influencing factors. The 

multi-level capturing ability of the attention mechanism allows the model to simultaneously consider 

these relationships, leading to a more comprehensive understanding of the formation mechanisms of 

electricity demand. This contributes to improving the model's ability to model complex time series 

data. Lastly, the representation capacity of the model is enhanced by aggregating the outputs from 

multiple heads. The mechanism provides a richer and more comprehensive data representation, aiding 

the model in capturing essential features within the data. In electricity demand prediction, this implies 

that the model can more accurately comprehend global influencing factors such as seasonality and 

periodicity, thereby improving prediction accuracy and robustness[30]. 

3 Methods 

3.1 Overview 

The model employed in this study is an innovative deep learning architecture that integrates 

Word2Vec, ConvTrans, and Attention Mechanism with the aim of enhancing the accuracy of 
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electricity demand forecasting. The fundamental process of the model encompasses data collection, 

preprocessing, Word2Vec embedding, historical demand data processing, ConvTrans layer, and 

Attention Mechanism. 

Initially, a comprehensive dataset was constructed by gathering geographical information data 

containing various factors such as historical load data, weather information, quarters, holidays, 

months, geographical locations, population quantities, etc. These data underwent preprocessing to 

ensure alignment on the same time axis. Subsequently, the Word2Vec embedding layer was applied 

to transform diverse influencing factors like weather and quarters into distributed representations, 

capturing their semantic information. Historical load data underwent embedding through the 

Word2Vec model using a sliding window approach, incorporating them into the same vector space. 

Following that, the Transformer encoder layer was introduced, leveraging the encoder structure of 

the Transformer model to process all embedded sequences. This aids in capturing long-term 

dependencies within the sequences, enhancing the modeling effectiveness for historical load and 

various factors. Additionally, the model incorporated an Attention Mechanism, enabling parallel 

attention to complex relationships among different influencing factors. This model, through the 

comprehensive application of these advanced techniques, achieves more accurate predictions of 

electricity demand variations. By effectively utilizing multi-source data and considering the 

interactive relationships among various influencing factors, it provides an optimized deep learning 

model for intelligent forecasting of energy demand in the power system. The structure of the model 

is shown in Fig.1. 

 

 

Fig.1 Model Structure Diagram. 

 

3.2 Data Collection 

To conduct electricity demand forecasting, we executed a thorough data collection process to 

ensure that the model's training and predictions are based on a comprehensive information foundation. 

The following are the specific steps and detailed procedures involved in the data collection: (1) Data 

Sources: Initially, multiple data sources were identified in Beijing's Chaoyang district, including the 

Beijing Chaoyang District Power Company, meteorological bureau, statistical bureau, and other 

relevant government agencies that voluntarily disclose data. These sources provided data on the 

Chaoyang district's electricity system, weather, and socio-economic aspects. (2) Historical Load Data: 

Historical load data for the past five years were obtained from the Chaoyang District Power Company. 

This dataset includes detailed hourly electricity consumption, providing a time-series representation 

of the power system load. (3) Weather Data: Meteorological data for the same time range were 

obtained from voluntary disclosures by the Chaoyang district meteorological bureau. This data 

encompassed temperature, humidity, wind speed, among other factors, and was utilized to analyze 

the impact of weather factors on electricity demand. (4) Quarter, Month, and Holiday Information 



International Journal of Management and Organization (IJMO), 2025, 3(2), 1-22. 
 

 7 

Integration: Information regarding quarters, months, and specific holidays was integrated into the 

dataset. (5) Geographical Information and Population Data: For this data collection, we used data 

from the Chaoyang District Statistical Bureau, including area divisions, population figures, and 

electricity usage characteristics. 

Strict data cleaning procedures were implemented, addressing missing values, outliers, and 

anomalies. Interpolation methods were applied to fill missing data, ensuring data completeness. 

Subsequently, all data were aligned and synchronized on the time axis to ensure temporal consistency 

across different data sources. For data storage and management, an SQL-based database system was 

adopted, organizing all collected data into tables that store information on load, weather, and other 

influencing factors. Throughout the entire process, comprehensive data quality checks were 

conducted to ensure accuracy and consistency. An additional layer of validation and processing was 

applied to handle any identified abnormal data. This meticulous data collection process provides a 

robust foundation for developing an accurate electricity demand forecasting model for the Chaoyang 

district. The electricity demand data collection process is shown in Fig.2. 

 

 
Fig.2 Electricity load data collection process. 

 

3.3 Word2vec and Sliding Windows for Power System Data Preprocessing 

The crucial innovative step in the proposed model lies in the application of a sliding window 

approach to handle the time series data of electricity demand. The entire time series is divided into 

fixed-size windows, each covering a continuous segment of the time series data, forming a 

subsequence. These windows slide along the time axis, covering the entire dataset. The flexibility of 

this step allows us to capture the characteristics of electricity load variations at different time scales. 

Subsequently, for each subsequence generated by the sliding window, we employed the Word2Vec 

model for embedding. Historical electricity load data is treated as a sequence of words inputted into 

the Word2Vec model. The model, by learning contextual information, maps this sequence into Word 

Embeddings within a high-dimensional vector space. Essentially, this process transforms historical 

load data into vector representations imbued with semantic information. Finally, we assemble the 

Word Embeddings generated for each sliding window in chronological order to create a Word 

Embedding time series. This time series preserves the semantic evolution of historical electricity load 
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data while considering the continuity of time. Through this integrated processing pipeline of 

Word2Vec and sliding window techniques, we establish a more informative and semantically rich 

data representation, providing the electricity demand forecasting model with more accurate and 

comprehensive inputs. The principle of word2vec and sliding windows for power system data 

preprocessing is shown in Fig.3. 

 

 

Fig.3 The principle of word2vec and sliding windows for power system data preprocessing. 

 

3.4 Multiple Attention Mechanisms for Data Fusion of Multiple Influences 

Due to the significant correlation between power demand factors and time, similar influencing 

factors may have entirely different implications on different dates. Leveraging this characteristic, this 

paper introduces an attention module to adaptively extract date-related information from influencing 

factors, facilitating the fusion of feature representations between influencing factors and dates. 

Initially, the attention module takes an influencing factor vector obtained by concatenating 

multiple factor values and a date vector as input. Three linear layers are employed to obtain variables 

Q, K, and V. The 32-dimensional date vector is fed into the first linear layer to yield a 16-dimensional 

query vector, denoted as Q. Simultaneously, the 5-dimensional influencing factor vector is input into 

the other two linear layers to obtain 16-dimensional vectors, designated as keys (K) and values (V). 

After obtaining these three vectors, Q and K are utilized to calculate attention weights, as per the 

formula (1). 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 = Softmax(𝑄𝑇 ⋅ 𝐾)          [Formular 1] 

 

The transposed Q is matrix-multiplied with K, resulting in a matrix of shape (16, 16). Applying 

the Softmax function to the last dimension of the matrix yields attention weights, denoted as Attention. 

In this module, Q represents features extracted from the date vector, while K captures features 

extracted from the influencing factor vector. The calculated attention weights, Attention, thus 

integrate information from both influencing factors and dates. Finally, as expressed in formula (2), 

the product of V and the transposed attention weights yields the output of the attention module. 

Output = V ⋅ AttentionT            [Formular 2] 

In this step, attention weights are employed to adjust the weights of various feature components 

within the influencing factor information. Consequently, the attention module effectively utilizes the 

correlation between dates and influencing factors to extract pertinent hidden features of influencing 



International Journal of Management and Organization (IJMO), 2025, 3(2), 1-22. 
 

 9 

factors. The principle of Multiple attention mechanisms for data fusion of multiple influence data is 

shown in Fig.4. 

 
Fig.4 The principle of Multiple attention mechanisms for data fusion of multiple influence data. 

 

3.5 Convtrans Model for Electricity Demand Forecasting 

The Transformer model is a deep learning architecture based on attention mechanisms, originally 

proposed by Vaswani et al. in 2017 for natural language processing tasks such as machine translation. 

The ConvTrans model is an improved model based on the Transformer model, specifically for time 

series data forecasting. Its core principles of the Transformer model include the following four aspects. 

(1) Self-Attention Mechanism: The Transformer model's core is the self-attention mechanism. 

In traditional Recurrent Neural Networks (RNNs), information is sequentially passed through the 

sequence, while the self-attention mechanism allows the model to assign varying attention to different 

positions in the input sequence. This enables the model to better capture long-range dependencies. 

(2) Multi-Head Attention Mechanism: The Transformer introduces the multi-head attention 

mechanism, processing multiple heads in parallel. This allows the model to learn features at multiple 

levels and types. Each head focuses on different aspects of the sequence, enhancing the model's 

expressive power. 

(3) Positional Encoding: Since the Transformer lacks inherent sequential information like 

traditional RNNs, positional encoding is introduced to embed the position information of elements in 

the input sequence into the model. This is crucial for handling time-ordered time series data. 

(4) Residual Connection and Layer Normalization: Each sub-layer in the model includes residual 

connections and layer normalization, contributing to improved training stability. Residual 

connections alleviate the vanishing gradient problem by directly adding the input to the output of the 

sub-layer. 

The ConvTrans model improves the calculation of Attention based on the Transformer to adapt 

to time series data and proposes the Convolutional Self-Attention algorithm to address the 

Transformer's poor scalability issue. The core of the Convolutional Self-Attention mechanism is Self-

Attention, which maps the input feature map of the current time step to two different feature spaces, 

calculates query, key, and value, computes similarity scores, and finally obtains summarized features 

through normalization and weighted summation. The Convolutional Self-Attention mechanism 

introduces convolutional operations, allowing the model to better capture local context information 

in time series, thereby reducing the impact of anomalies on prediction results and enhancing the 

modeling capability of the model. Additionally, the ConvTrans model possesses unique advantages 

of the Transformer architecture, such as supporting parallelization, faster training, and stronger long-
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term dependency modeling capabilities, resulting in improved performance on long sequences. The 

principle of ConvTrans model for electricity demand forecasting is shown in Fig.5. 

 

Fig.5 The principle of ConvTrans model for electricity demand forecasting. 

 

The logic of the entire model is represented in pseudo-code as follows: 

Algorithm 1: Integrating Word2Vec, ConvTrans, and Attention Mechanisms for Electricity Demand Forecasting  

# input layers 
input_date = layers. Input(shape=(date_vector_size,)) 

input_factors = layers.Input(shape=(factors_vector_size,)) 

 
# Embedding layer by using Word2Vec 

embedding_layer = layers.Embedding(input_dim, input_factors) 

 
# Attention module 

Q = layers.Dense(16)(input_date) 

K = layers.Dense(16)(embedding_layer) 
V = layers.Dense(16)(embedding_layer) 

attention_weights = softmax(matmul(transpose(Q), K) / sqrt(16)) 

attention_output = matmul(attention_weights, V) 
# Concatenate attention output with original date vector 

concatenated_output = Concatenate(attention_output, input_date) 

 
# ConvTrans layers for electricity demand forecasting 

forecaste_output=ConvTrans(input_date, concatenated_output) 

 
# Output layer 

output = layers.Dense(output_size, activation='linear', forecaste_output) 

 
# Build the model 

model =Model(inputs, outputs) 

 
# Compile the model 

model. Train() 

 

4 Experience 

4.1 Experimental Design 
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This study conducted three experiments in total. The first experiment involved contrasting our 

proposed method with various baseline methods on a single dataset, confirming the superior 

performance of our approach. The second experiment compared the operational results of our method 

across multiple datasets, demonstrating the robustness and generalization capability of our approach. 

Additionally, a model ablation experiment was conducted for our proposed method, affirming the 

intrinsic value of each component in the model. 

The experiments were conducted on a workstation equipped with an Intel Core i7 processor and 

32GB of memory. The software environment included Python 3.8, TensorFlow 2.5, and relevant deep 

learning libraries. GPU acceleration, facilitated by an NVIDIA GeForce RTX 3080 graphics card, 

was utilized for model training. All experiments were conducted on the Ubuntu 20.04 LTS operating 

system. 

For our model, meticulous parameter tuning was performed to ensure experiment comparability 

and result robustness. The model parameters were set as follows: 

1. Word vector dimension: 300.s 

2. sliding window size: 5. 

3. Learning rate: 0.001. 

4. epoch: 50. 

5. Batch size: 64. 

4.2 Experimental Data Set 

In the multi-dataset comparative experiment, we selected four public datasets, namely, the 

Global Energy Forecasting Competition (GEFCom), REDI: Spanish Electricity Demand dataset, PJM 

Hourly Energy Consumption Data, and EIA-930, for evaluation: 

DataSet #1. Global Energy Forecasting Competition (GEFCom) [31]: GEFCom is a collection 

of datasets provided by the International Energy Forecasting Competition, primarily covering 

electricity load forecasting and renewable energy generation prediction. These datasets include 

electricity demand and production data from different geographic regions and time periods, featuring 

high resolution and diversity. The GEFCom dataset covers characteristics of power systems globally, 

enhancing the generalization capability of the model proposed in this study. 

DataSet #2. REDI: Spanish Electricity Demand dataset [32]: The Spanish Electricity Demand 

dataset (REDI) covers electricity demand across various regions in Spain, offering detailed time series 

data at an hourly granularity. This dataset meticulously captures load variations in the Spanish 

electricity system. REDI's temporal span and regional coverage contribute to enhancing the 

robustness and generalization of the model in practical applications. 

DataSet #3. PJM Hourly Energy Consumption Data [33]: PJM Hourly Energy Consumption 

Data, provided by PJM Interconnection, includes electricity demand data for most of the northeastern 

United States at an hourly resolution. This dataset provides information on power demand over an 

extended time span. The PJM dataset encompasses a crucial region in the U.S., facilitating the study 

of seasonal patterns, trends, and special events in power demand, providing rich learning material for 

the model. 

DataSet #4. EIA-930 [34]: EIA-930, offered by the U.S. Energy Information Administration, 

consists of monthly electricity demand data for various regions in the United States, offering 

nationwide and regional-level demand information. This dataset provides comprehensive and detailed 

information for studying U.S. electricity demand trends and patterns, as well as predicting future 

demand changes. 
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These four datasets provide diverse data sources for the electricity demand forecasting task, 

covering different regions and time periods globally. Leveraging these datasets enables the 

establishment of robust and accurate electricity demand prediction models. It allows a deep 

understanding of the operational conditions of power systems under various circumstances, 

enhancing the model's generalization performance to adapt to different geographic and environmental 

features. In this study, the GEFCom dataset was utilized for the performance comparison experiment 

on a single dataset. 

For preprocessing the time series data on electricity demand, common techniques such as data 

normalization, standardization, missing value imputation, and anomaly detection were employed. The 

dataset was then partitioned into training, validation, and test sets in a 7:2:1 ratio. In the ablation 

experiment, we systematically removed certain key components from the model to assess their impact 

on model performance. 

4.3 Baseline Model and Evaluation Indicators 

In this study, six SOTA models were found from the literature as baseline models. The models 

are as follows: 

Model #1: [35] this study proposed a novel optimal hybrid strategy for building load prediction 

that combines BiLSTM, CNN, and grey wolf optimization (GWO). 

Model #2: [36] this study used the Multiple Seasonal-Trend Decomposition using Loess (MSTL) 

technique for the electricity demand forecasting problem. 

Model #3: [37] this study presented a model that integrates a multi-criteria approach which 

provides the selection of relevant independent variables and artificial neural networks to forecast the 

electricity demand in countries. 

Model #4: [38] this study proposed a hybrid combination technique, based on a deep learning 

model of Convolutional Neural Networks and Echo State Networks, named as CESN 

Model #5: [39] this study provided a solution based on statistical methods (ARIMA, ETS, and 

Prophet) to predict monthly power demand, which approximates the relationship between historical 

and future demand patterns. 

Model #6: [40] this study proposed an ideal technique for short-term power demand prediction 

as a novel hybrid approach comprising two distinct methods, namely the Elman neural network (ELM) 

and adaptive network–based fuzzy inference system (ANFIS).  

To compare model performance differences, the following model comparison indicators were 

used: 

1. Root Mean Squared Error (RMSE): Measures the average difference between actual and 

predicted values, with lower values indicating better performance. 

RMSE = √
1

n
∑ (yi − yî)2
n
i=1               [Formular 3] 

where n is the sample size, yi is the actual value, and yî is the predicted value. 

2. Mean Absolute Error (MAE): Represents the average absolute difference between actual and 

predicted values, with smaller values indicating better performance. 

MAE =
1

n
∑ |yi − yî|
n
i=1                 [Formular 4] 

3. Mean Squared Error (MSE): The square of RMSE, used to quantify the squared average 

difference between actual and predicted values. 

MSE =
1

n
∑ (yi − yî)

2n
i=1               [Formular 5] 
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4. Coefficient of Determination (R²): Represents the percentage of variance explained by the 

model, with values closer to 1 indicating better explanatory power. 

R2 = 1 −
∑ (yi−yî)

2n
i=1

∑ (yi−y̅)
2n

i=1

                [Formular 6] 

 

where y̅ is the mean of actual values. 

5. Pearson Correlation Coefficient: Measures the linear correlation between actual and predicted 

values, ranging from -1 to 1, with values closer to 1 indicating stronger correlation. 

Corr(X, Y) =
Cov(X,Y)

σXσY
                [Formular 7] 

 

where Cov(X, Y)  is the covariance between X  and Y , and σX  and σY  are the standard 

deviations of X and Y. 

6. Accuracy: Represents the proportion of correctly predicted samples out of the total samples, 

commonly used in classification tasks. 

Accuracy=
TP+TN

TP+TN+FP+FN
             [Formular 8] 

where TP is true positive, TN is true negative, FP is false positive, and FN is false negative. 

7. Precision: Represents the proportion of correctly predicted positive instances out of all 

predicted positive instances, particularly useful for imbalanced datasets. 

Precision=
TP

TP+FP
                 [Formular 9] 

 

8. Recall: Represents the proportion of actual positive instances correctly predicted by the model 

out of all actual positive instances. 

Recall=
TP

TP+FN
                 [Formular 10] 

 

9. F1-score: A metric that combines precision and recall, suitable for imbalanced class situations. 

F1-score=
2×Precision×Recall

Precision+Recall
            [Formular 11] 

 

10. Mean Absolute Percentage Error (MAPE): Measures the average percentage difference 

between actual and predicted values, a commonly used percentage error metric. 

MAPE =
1

n
∑ |

yi−yî

yi
|n

i=1 × 100%            [Formular 12] 

where n is the sample size, yi is the actual value, and yî is the predicted value. 

 

4.4 Comparison Experiment 

4.4.1 Comparison results with SOTA models 

Our model demonstrates a notable performance advantage in the electricity demand prediction 

comparative experiment. The results of the comparison with the six baseline models are shown in 

Table 1. 
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Table 1. The results of the comparison with the six baseline models. 

Model MSE RMSE MAE MAPE R² Pearson Correlation F1-score 

Model #1[35] 9.75% 320.03% 7.02% 8.50% 77.54% 80.98% 77.21% 

Model #2[36] 8.72% 445.39% 8.89% 7.25% 83.19% 84.09% 79.29% 

Model #3[37] 9.66% 470.85% 8.53% 6.86% 88.93% 88.57% 83.11% 

Model #4[38] 7.14% 413.38% 8.41% 6.70% 88.39% 76.76% 89.99% 

Model #5[39] 7.74% 405.97% 7.17% 9.03% 77.81% 87.64% 81.20% 

Model #6[40] 5.09% 488.59% 6.40% 8.19% 88.43% 76.73% 78.20% 

Ours 5.81% 463.56% 5.91% 6.83% 89.24% 91.62% 90.12% 

Source: By authors. 

 

Leveraging an attention module designed to adaptively extract date-related information from 

influencing factors, our model effectively fuses features from both influencing factors and dates, 

enhancing the model's ability to capture nuanced dependencies in the data. The attention mechanism 

enables the adjustment of the weightings of different features within influencing factors, effectively 

incorporating the temporal correlation of electricity demand. This robust fusion of information 

contributes to the superior generalization and performance of our proposed model compared to the 

alternative methodologies, highlighting its efficacy in addressing the intricacies of electricity demand 

forecasting. Figure 6 illustrates the indicators that measure the accuracy of the models' forecast. 

 

Fig.6 Comparison of model accuracy indicators. 

 

Figure 7 illustrates the indicators that measure the comprehensive performance of the models' 

forecast. 
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Fig.7 Comparison of model composite indicators. 

 

4.4.2 Comparison results in different datasets 

To validate the robustness and generalization capabilities of the proposed model, we conducted 

extensive and in-depth performance tests across the four distinct electricity demand datasets and the 

dataset collected by ourselves. The results of this series of experiments clearly demonstrate that the 

model performs exceptionally well in diverse scenarios, showcasing outstanding robustness and 

generalization abilities. Table2 shows the comparison results in four datasets. 

 

Table 2. The results of the comparison within different datasets. 

Data sets MSE RMSE MAE MAPE R² 
Pearson 

Correlation 
F1-score 

GEFCom 5.81% 463.56% 5.91% 6.83% 89.24% 91.62% 90.12% 

REDI 5.51% 481.35% 5.24% 9.15% 73.51% 82.15% 90.15% 

PJM 6.52% 421.03% 6.41% 5.67% 72.31% 86.62% 87.35% 

EIA-930 4.25% 419.12% 5.12% 6.23% 79.26% 81.12% 82.51% 

Real data 5.35% 425.72% 5.51% 6.72% 82.52% 81.15% 83.46% 

Source: By authors. 

 

Initially, we conducted tests on the Global Energy Forecasting Competition (GEFCom) dataset. 

Through performance testing on this diverse dataset, we were able to assess the model's generality in 

predicting electricity demand under different geographical and temporal conditions. The 

experimental results indicate that the proposed model excelled on the GEFCom dataset, affirming its 

strong generalization performance. 

Subsequently, we performed further validation on the REDI: Spanish Electricity Demand dataset. 

By conducting performance tests on this regional dataset, we evaluated the model's adaptability to 

different geographical regions. The results showed satisfactory performance on the REDI dataset, 

indicating robustness in predicting electricity demand across diverse geographic areas. Figure 8 

shows the results of the model run on this dataset and the differences on the GEFCom dataset. 

 

 

Fig.8 Result difference between REDI and GEFCom dataset. 



International Journal of Management and Organization (IJMO), 2025, 3(2), 1-22. 
 

 16 

 

Next, we turned to the PJM Hourly Energy Consumption Data, conducting tests on this pivotal 

dataset to examine the model's predictive capabilities for specific regional electricity demand. The 

experimental results demonstrated excellent performance on the PJM dataset, highlighting the 

model's ability to adapt to distinct geographical features. Figure 9 shows the results of the model run 

on this dataset and the differences on the GEFCom dataset. 

 

 

Fig.9 Result difference between PJM and GEFCom dataset. 

 

Then, we utilized the EIA-930 dataset provided by the U.S. Energy Information Administration, 

conducting tests on this nationwide dataset to assess the model's adaptability to larger-scale data. The 

results indicated that the proposed model maintained robust performance on the EIA-930 dataset, 

showcasing its superior generalization capabilities in larger-scale datasets. Figure 10 shows the results 

of the model run on this dataset and the differences on the GEFCom dataset. 

 

 

Fig.10 Result difference between EIA-930 and GEFCom dataset. 

 

Finally, we utilized the collected dataset by ourselves. It is the electricity demand data for 

Chaoyang District, Beijing, China, November 25, 2023. Conducting tests on this specific dataset to 

assess the model's adaptability to real data. The results indicated that the proposed model maintained 

robust performance on the real dataset, showcasing its superior generalization capabilities in real 

datasets. Figure 11 shows the results of the model run on this real dataset and the differences on the 

GEFCom dataset. 

 

 

Fig.11 Result difference between real dataset and GEFCom dataset 

 

Synthesizing the results from these four datasets, our conclusion is that the proposed model 

exhibits exceptional performance across different geographical regions and temporal conditions, 

demonstrating remarkable robustness and generalization capabilities. 

4.4.3 Comparative results of Flops on different data sets 

We also compared the Flops values of our proposed model and six baseline models during the 

inference process. The results indicate that our model has lower Flops values during inference, 

demonstrating the model's reduced computational overhead. The comparison results are shown in 

Figure 12. 

 



International Journal of Management and Organization (IJMO), 2025, 3(2), 1-22. 
 

 17 

 

Fig.12 The Flops(h) comparison results. 

 

4.5 Ablation Experiment 

To validate the effects produced by the individual models in the proposed model, an ablation 

experiment is concluded that rejects each module separately and measures the change in model 

performance. The results of the experiment are shown in Table 3. 

 

Table 3. Results of the ablation experiment. 

ConvTrans Word2Vec Attention MSE RMSE MAE MAPE R² Pearson Correlation F1-score 

✓   7.72% 376.93% 12.72% 9.13% 54.62% 78.92% 74.31% 

✓ ✓  6.24% 362.32% 7.42% 8.27% 62.46% 82.25% 81.63% 

✓ ✓ ✓ 5.81% 463.56% 5.91% 6.83% 89.24% 91.62% 90.12% 

The results in Table 3 are presented graphically as Figure 13. 

 

 

(a) comparison result of MSE, MAE, MAPE indicators. 
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(b) comparison result of R², Pearson Correlation, F1-score indicators. 

Fig.13 Ablation experiment results. 

 

We conducted experiments by progressively excluding the attention module to compare the 

performance variations of the model when the attention mechanism is eliminated. The results indicate 

that the introduction of the attention module significantly enhances the model's predictive accuracy. 

The ablation experiments further validate the critical role of this module in the model, as it can 

adaptively integrate date and external influencing factor information, thereby aiding the model in 

capturing the spatiotemporal relationships of electricity demand more effectively. In the absence of 

the attention module, the assistance provided by external influencing factor data in enhancing the 

model's predictive capabilities is noticeably reduced, leading to a decrease in predictive performance. 

We also conducted ablation experiments by progressively removing the Word2Vec module to 

compare the performance variations of the model after excluding the Word2Vec module. The results 

indicate that the introduction of the Word2Vec module significantly enhances the model's semantic 

representation capabilities and feature learning effectiveness. The ablation experiments further 

validate the critical role of this module in the model. We compared the performance of the model in 

semantic representation and feature learning when the Word2Vec module was removed. The results 

show that the elimination of the Word2Vec module noticeably restricts the model's expression of 

semantic information for vocabulary, leading to a decrease in model performance. The presence of 

the Word2Vec module enables the model to better understand the relationships between words, 

thereby improving its performance in the task of electricity demand forecasting. 

5 Conclusion 

This study aims to enhance the accuracy and generalization capability of electricity demand 

forecasting, thereby improving the efficiency of electricity resource production, distribution, and 

utilization. Through innovative designs such as the introduction of attention and Word2Vec modules, 

we have constructed a high-performance electricity demand prediction model. Extensive 

experimental validations and testing on multiple public datasets demonstrate the exceptional 

performance of our model in electricity demand prediction tasks. 
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The incorporation of the attention module enables the model to dynamically fuse date and 

external factors, better capturing the spatiotemporal relationships between electricity demand and 

external influences. Additionally, the application of the Word2Vec module enhances the 

understanding and representation of semantic information, allowing the model to capture complex 

data features more accurately. The use of the ConvTrans model further strengthens the modeling 

capability for time series data, increasing sensitivity to variations in electricity demand time series. 

The combination of these innovative designs positions our model to outperform six baseline 

models across various performance metrics. Comparative experiments against the baseline models on 

multiple public datasets, including the Global Energy Forecasting Competition, REDI, PJM Hourly 

Energy Consumption Data, and EIA-930, reveal outstanding robustness and generalization 

capabilities. The model exhibits superior performance in metrics such as Mean Absolute Error (MAE), 

Coefficient of Determination (R²), Pearson Correlation Coefficient, and F1-score compared to the 

baseline models. During the inference process, the model demonstrates lower Flops values, indicating 

relatively lower computational overhead. 

In summary, our proposed electricity demand prediction model not only showcases innovation 

in design through the incorporation of attention mechanisms, Word2Vec modules, and ConvTrans 

models but also significantly improves performance metrics. The model's outstanding robustness and 

generalization capabilities across multiple datasets provide reliable decision support for electricity 

system planning and operations. 

6. Outlook 

Although this study has achieved significant advancements in the field of electricity demand 

forecasting, there are still notable limitations that should be acknowledged. Firstly, the performance 

of the model is constrained by the diversity and coverage of the adopted datasets. Despite extensive 

testing across multiple datasets, these may not comprehensively cover all potential scenarios in 

electricity demand. Consequently, the generalization ability of the model in specific geographic 

regions or under environmental conditions requires further in-depth validation. To address these 

limitations and advance research in electricity demand forecasting, future studies can explore the 

incorporation of additional external factors from diverse sources and dimensions, such as 

socioeconomic factors and policy changes. This extension aims to enhance the model's capability to 

model complex influencing factors comprehensively, thereby improving its accuracy in predicting 

electricity demand variations. 

Secondly, the sensitivity of the model to external factors may be limited, especially when facing 

extreme weather events or other unforeseen circumstances. For these complex situations, the model 

may benefit from more sophisticated approaches involving the introduction of complex external 

factors or specialized handling strategies to enhance its capability in responding to unforeseen events. 

Consequently, future research could focus on optimizing the model's real-time performance and 

adaptability, particularly in dealing with unexpected events. This could involve the incorporation of 

dynamic update mechanisms and more flexible model structures to ensure efficient and accurate 

predictions in rapidly changing electricity system environments. 

Lastly, customization of the model to meet specific regional or industry requirements can be 

explored further. This tailoring process would adapt the model to the unique characteristics of 

different backgrounds in electricity demand forecasting tasks. Through these customized adjustments, 

the model could achieve higher relevance and applicability in diverse contexts. 
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Exploring these future research directions is anticipated to expand the applicability of electricity 

demand forecasting models, enhancing their accuracy and operability. This, in turn, would provide 

robust support for the efficient production, distribution, and consumption of electric energy. 
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