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ABSTRACT 

Breast cancer diagnosis is crucial for improving patient survival rates, yet the explainability of 

machine learning models remains a significant challenge in clinical applications. This study focuses 

on feature importance analysis and model explainability in breast cancer diagnosis, highlighting the 

importance of transparency in medical feature interpretation. By combining FreeViz visualization, 

SHAP analysis, and LiNGAM causal inference, this research explores key features influencing tumor 

classification and enhances interpretability in the decision-making process. The results show high 

consistency across methods, confirming that tumor size, shape irregularity, and boundary morphology 

are essential in distinguishing malignant from benign tumors. Furthermore, integrating causal 

inference provides insight into feature interactions and clinical relevance. These findings underscore 

the value of explainable AI in medical diagnostics, enhancing clinical trust, supporting early 

detection, and enabling personalized treatment planning. The study contributes to evidence 

supporting the deployment of interpretable machine learning models in critical healthcare domains. 

Keywords: Breast cancer, Causal inference, SHAP explanations, Feature visualization 

1. Introduction 

1.1 Breast Cancer 

Breast cancer is one of the most common malignant tumors among women worldwide [1]. Early 

diagnosis and accurate prediction are crucial for improving patient survival rates and optimizing 

clinical decision-making. To facilitate early detection and precise differentiation between benign and 

malignant tumors, researchers have extensively applied machine learning and data mining techniques 

in breast cancer diagnosis [2]. Breast cancer arises from the uncontrolled growth of epithelial cells in 

the ducts or lobules of the breast tissue, and its progression is often associated with complex 

interactions among genetic, hormonal, and environmental factors [3]. Clinical features commonly 

used in diagnosis include tumor size, shape, margins, and tissue texture, which can be observed 

through imaging modalities such as mammography, ultrasound, and magnetic resonance imaging 

(MRI) [4]. Given the heterogeneity of breast cancer—such as differences among molecular subtypes 
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like HER2-positive, luminal A/B, and triple-negative—there is an urgent need to build interpretable 

and robust artificial intelligence (AI) models [5]. These models should not only improve diagnostic 

accuracy but also provide insights into the underlying biological mechanisms, thus supporting 

personalized treatment strategies and clinical decision-making [6]. 

1.2 Medical Imaging and Deep Learning 

In recent years, with advancements in medical imaging technology and artificial intelligence 

(AI), machine learning methods have become essential tools for assisting physicians in diagnosing 

breast cancer. Among these methods, deep learning techniques, particularly Convolutional Neural 

Networks (CNNs), have demonstrated outstanding performance in analyzing mammography, 

ultrasound, magnetic resonance imaging (MRI), and histopathology images [7,8]. These approaches 

can automatically learn image features, enhancing tumor classification accuracy and reducing the 

likelihood of human misdiagnosis. Studies have shown that CNN-based models can achieve 

diagnostic accuracy comparable to that of radiologists in detecting abnormalities in mammograms[9]. 

In addition, machine learning techniques have been widely applied in breast cancer diagnosis as 

well as in the analysis of clinical and genomic data. Commonly used models include Support Vector 

Machines (SVM), Convolutional Neural Networks (CNN), Random Forest, XGBoost, and Deep 

Neural Networks (DNNs). These methods have been employed to analyze patient history, biomarkers, 

and gene expression data, demonstrating excellent classification performance and predictive 

capabilities [10,11]. Furthermore, the integration of multi-omics data—such as genomic, 

transcriptomic, and proteomic information—further enhances the diagnostic accuracy of these 

models [12]. However, several practical challenges remain, including data imbalance, lack of 

interpretability, and difficulties in integrating these models into clinical workflows, all of which limit 

their scalability and widespread deployment in healthcare systems. 

1.3 Importance of Model Explainability 

    Despite machine learning's success in breast cancer diagnosis, model explainability remains a 

critical challenge, especially in high-stakes clinical environments. Many state-of-the-art models, 

particularly deep learning architectures, function as “black boxes” with limited interpretability, which 

can hinder their integration into routine clinical workflows. The emergence of Explainable AI (XAI) 

has improved transparency, enabling physicians to better understand model predictions and build trust 

in clinical practice [13]. Techniques such as Feature Importance Analysis, Local Interpretable Model-

agnostic Explanations (LIME), SHapley Additive exPlanations (SHAP), and Grad-CAM are 

increasingly used to visualize and interpret model outputs [14,15]. These methods help reveal which 

input features or image regions contribute most to classification, enhancing diagnostic confidence 

and enabling error analysis. 

    Moreover, explainability methods can aid in discovering novel imaging biomarkers or 

confirming known clinical indicators, bridging the gap between data-driven findings and medical 

knowledge [16]. In breast cancer, where heterogeneous subtypes require tailored treatments, 

interpretable models help identify subtype-specific features, contributing to more precise treatment 
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planning and improved patient outcomes. Additionally, regulatory bodies and ethical frameworks 

increasingly demand AI transparency, particularly in medical applications where explainability 

supports accountability, fairness, and patient safety [17]. 

1.4 Goal of the Study 

This study aims to evaluate the application of machine learning models in breast cancer 

diagnosis, with a particular focus on feature importance and model explainability. To achieve this, the 

study integrates three techniques: FreeViz, SHAP, and LiNGAM. These methods are used to analyze 

the feature distribution visualization (FreeViz), feature contribution (SHAP), and underlying causal 

structure (LiNGAM), respectively. Each technique provides complementary information on different 

levels of model interpretation—namely, visual presentation, local feature importance, and global 

causal explanation.  

This multi-layered explainability framework helps build an AI model with enhanced 

interpretability, increasing the trustworthiness and transparency of the results in clinical applications. 

Through this integrative approach, the study aims to identify key factors influencing tumor 

classification and further improve the accuracy, reliability, and interpretability of breast cancer 

diagnostic models. 

2. Methodology 

2.1 Datasets 

This study utilizes the publicly available Wisconsin Breast Cancer Dataset (WBCD)[18], a high-

quality dataset for breast cancer diagnosis. It contains 569 samples and 30 numerical features, 

describing the morphological characteristics of cell nuclei, as shown in Table 1. 

Table 1. Summary of Breast Cancer Diagnostic Data 

Attribute Count 

Total Samples (Cases) 569 

Malignant Tumors (M) 212 (37.3%) 

Benign Tumors (B) 357 (62.7%) 

Number of Features 30 

Target Variable 1 (Binary Classification: M / B) 

Missing Values None 

2.2 Feature Categories 

The features in the Wisconsin Breast Cancer Dataset (WBCD) are derived from the 

morphological analysis of cell nuclei, obtained through image processing techniques applied to 

digitized fine needle aspiration (FNA) biopsy images. These features serve as numerical 

representations of the tumor’s physical and structural characteristics, which are critical in 

distinguishing between benign and malignant cases. 



 Journal of Information and Computing (JIC), 2025, 3(2), 1-13. 

  4  
 

These features can be categorized into three groups: 

⚫ Mean Features: Represent the average shape and structure of the cell nucleus across all detected 

cells in a sample. These features provide a general morphological profile, such as the average radius, 

texture, and compactness, which helps indicate typical tissue appearance. 

⚫ Standard Error (SE) Features: Measure the variability of each morphological characteristic, 

reflecting how much the features fluctuate across the cell nuclei in a given sample. Higher standard 

error values may imply structural inconsistency or heterogeneity in the tumor, which is often 

associated with malignant behavior. 

⚫ Worst (Maximum) Features: Capture the most extreme (maximum) values for each morphological 

attribute within the sample. These features emphasize the most irregular or aggressive cell patterns 

observed, and are particularly useful in identifying malignancy due to the prominence of atypical 

nuclei. 

Each of the three feature categories contains 10 specific morphological characteristics, resulting 

in a total of 30 features in the dataset. These core features include measurements such as radius, 

texture, perimeter, area, smoothness, compactness, concavity, concave points, symmetry, and fractal 

dimension. These 10 core features are listed in Table 2. 

These well-structured categories not only enhance interpretability but also support machine 

learning models in capturing both the average and the extremes of cellular abnormalities—facilitating 

more accurate classification and diagnosis. By analyzing features across these three dimensions, 

clinicians and models alike can better understand both typical and atypical tumor behavior, supporting 

early detection and personalized decision-making. 

Table 2. Description of the 10 morphological features 
Feature Description 

radius radius of the cell nucleus 

texture variation in cell texture 

perimeter perimeter of the cell nucleus 

area area of the cell nucleus 

smoothness smoothness of the cell boundary 

compactness compactness of the cell  

concavity concavity of the cell nucleus boundary 

concave points number of concave points on the cell nucleus boundary 

symmetry symmetry of the cell nucleus 

fractal dimension fractal dimension of the cell nucleus boundary 
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2.3 FreeViz 

FreeViz (Free Visualization) [19] is a method specifically designed for exploring classified data 

and is widely used in machine learning and data analysis. Unlike traditional dimensionality reduction 

techniques such as Principal Component Analysis (PCA) or t-Distributed Stochastic Neighbor 

Embedding (t-SNE), which aim to preserve the overall variance or local structures in the data, FreeViz 

focuses on maximizing class separability by optimizing the placement of feature vectors in a 2D space. 

It treats each feature as a vector in a circular layout, and the position of each sample is projected 

according to a weighted combination of its feature values. This approach provides a more 

interpretable visualization of how each feature contributes to class discrimination, which is 

particularly useful in biomedical domains where interpretability is critical [20]. 

In Figure 1, the color of the data points represents different sample categories, with red points 

possibly corresponding to malignant tumors and blue points representing benign tumors. From the 

distribution of the data, the projection of samples in space exhibits a certain degree of separability, 

indicating that some feature variables can effectively distinguish between these two types of samples. 

Furthermore, the direction and clustering of samples in the FreeViz plot can hint at which features 

are most influential, providing valuable insights for feature selection and model interpretation.  

Compared to other visualization methods, FreeViz offers a balance between visualization 

intuitiveness and class-oriented interpretability, making it well-suited for exploratory analysis in 

medical datasets. 

 

Figure 1. Datasets visualized with FreeViz 

2.4 LiNGAM in Causal Inference 

This experiment uses LiNGAM [21] for causal inference. LiNGAM (Linear Non-Gaussian 

Acyclic Model) is a powerful causal discovery method that identifies causal directions between 

variables based on the assumption of non-Gaussianity, thereby determining direct causal relationships 

between variables. LiNGAM assumes that the observed variables 𝑋 follow the following structural 

equation model (SEM), as shown in Formula 1: 
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X BX e= +   [Formula 1] 

X: The vector of observed variables. 

B: The adjacency matrix representing causal relationships (a directed matrix) 

e: The non-Gaussian error term (noise). 

The causal structure is reconstructed by estimating the 𝐵 matrix using the Linear Non-Gaussian 

Acyclic Model (LiNGAM). Once the causal relationships are derived, a Directed Acyclic Graph 

(DAG) is generated to visually represent the causal structure among variables, as illustrated in Figure 

2. The DAG explicitly describes the causal influences between features, offering a clear depiction of 

the underlying relationships. Moreover, it serves as a crucial interpretability tool, facilitating a deeper 

understanding of the causal mechanisms within the dataset. 

 

 
Figure 2. Directed Acyclic Graph 

2.5 Model Training 

In this study, multiple interpretable machine learning models were trained to ensure that the 

models maintained high accuracy while also exhibiting good interpretability and transparency. The 

selected models included Decision Trees [22], Random Forest [23], XGBoost (Extreme Gradient 

Boosting) [24], LightGBM (Light Gradient Boosting Machine) [25], GDBT (Gradient Boosting 

Decision Tree) [26], and CatBoost (Categorical Boosting) [27]. These tree-based boosting methods 

effectively handle high-dimensional data and nonlinear relationships while enabling model decision 

interpretation through feature importance analysis, thereby enhancing model transparency and 

reliability. 

To evaluate model performance, the dataset was split into training set and testing set at an 8:2 

ratio, where the training set was used for model learning and the testing set was utilized to assess the 

model’s generalization ability on unseen data. Several evaluation metrics were employed, including 

accuracy, specificity, and sensitivity, to comprehensively measure the model's classification 

performance and its ability to distinguish between different classes. All experimental results are 

summarized in Table 3. 
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Table 3. Model Performance Evaluation 

Model Accuracy Sensitivity Specificity 

Decision Tree 0.947 0.890 0.980 

Random Forest 0.964 0.906 1.000 

XGBoost 0.964 0.906 1.000 

LightGBM 0.964 0.906 1.000 

GDBT 0.953 0.890 0.990 

CatBoost 0.970 0.921 1.000 

2.6 SHAP 

SHAP (Shapley Additive Explanations) [28] is employed to analyze and interpret the trained 

model, assessing the impact of each feature on model decisions. SHAP, grounded in game theory, 

quantifies feature importance by computing its marginal contribution to different predictions. This 

approach offers both global interpretability, which provides an overview of feature influence across 

the entire model, and local interpretability, which explains individual predictions by attributing 

contributions to specific features. 

To further illustrate feature contributions, SHAP values are visualized using summary plots, 

dependence plots, and force plots, enabling a comprehensive understanding of the model's decision-

making process. These visualizations not only enhance model transparency but also help identify 

potential biases or misleading patterns, thereby ensuring the robustness and reliability of the model 

in clinical applications. 

3. Results 

3.1 FreeViz Analysis 

Further observation of Figure 1 reveals that malignant tumor samples (red dots) are more 

concentrated in certain directions, while benign tumor samples (blue dots) are more dispersed, 

indicating that some features have stronger discriminative power for identifying malignant tumors. 

This phenomenon suggests that features such as concave_points_worst, radius_worst, and 

perimeter_mean play a crucial role in the classification of malignant tumors, whereas 

fractal_dimension_mean and symmetry_se may only provide auxiliary information. 

3.2 Causal Analysis 

The causal inference derived from the DAG generated by LiNGAM, as shown in Table 4, 

indicates that the maximum tumor area (area_worst) has the strongest causal effect on the standard 

error of fractal dimension (fractal_dimension_se), with a causal strength of 5254.00028. This 

highlights a significant relationship between tumor size and boundary complexity. 

Similarly, the mean tumor area (area_mean) has a highly significant impact on the mean fractal 
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dimension (fractal_dimension_mean), with a causal strength of 5188.94672. This suggests that larger 

tumors tend to have more complex and irregular boundaries, reinforcing the relationship between 

tumor size and morphological irregularities.Additionally, the mean tumor area (area_mean) 

significantly influences the standard error of smoothness (smoothness_se), with a causal strength of 

4210.03306. This indicates a correlation between tumor size and variations in boundary smoothness, 

suggesting that larger tumors may exhibit more fluctuations in smoothness.The maximum tumor area 

(area_worst) also affects the most severe number of concave points (concave_points_worst), with a 

causal strength of 1522.23201, suggesting that larger tumors may have more concave edges. 

Furthermore, the mean tumor area (area_mean) has a certain causal effect on the mean number of 

concave points (concave_points_mean), with a causal strength of 678.36314. This further supports 

the relationship between tumor size and boundary morphology characteristics. 

Table 4. Causal Strength Analysis of Features 

Cause Effect Causal Strength 

area_worst fractal_dimension_se 5254.00028 

area_mean fractal_dimension_mean 5188.94672 

area_mean smoothness_se 4210.03306 

area_worst concave_points_worst 1522.23201 

area_mean concave_points_mean 678.36314 

3.3 SHAP Interpretation 

Due to differences in model architectures and learning strategies, decision trees and random 

forests primarily rely on SHAP interaction values for model interpretation, whereas gradient boosting 

decision tree models (such as CatBoost, GBDT, LightGBM, and XGBoost) utilize a stepwise learning 

mechanism (Boosting) and typically focus on SHAP feature values to evaluate the impact of features 

on prediction outcomes. In these models, each tree is trained on the residuals of the previous tree, 

allowing feature interactions to be naturally embedded through iterative learning. Therefore, SHAP 

feature values alone can effectively reflect both the importance and the directional influence of 

individual features. 

In contrast, a single decision tree makes split decisions based on one feature at a time and lacks 

the mechanism to capture feature interactions. As a result, its SHAP interaction values are generally 

close to zero, as illustrated in Figure 3(a). Random forests, composed of an ensemble of independent 

decision trees, are capable of partially capturing more complex relationships through aggregation, 

leading to slightly higher SHAP interaction values, as shown in Figure 3(b). However, the level of 

interaction captured is still less pronounced than that of Boosting-based models.  

This analysis helps clarify the appropriate strategies and limitations when interpreting different 

tree-based models and provides practical guidance on selecting models and matching them with 

suitable explanation techniques. 



 Journal of Information and Computing (JIC), 2025, 3(2), 1-13. 

  9  
 

   
       (a)  (b) 

Figure 3. SHAP Interaction Values (a) Decision trees (b) Random forest 

Through SHAP analysis, the importance of different features in the prediction results varies 

across different machine learning models. 

For the CatBoost model, the most significant feature influencing the prediction result is the 

maximum perimeter value (perimeter_worst), as shown in Figure 4(a). This feature is directly related 

to the size of the tumor, and a higher perimeter generally correlates with a more malignant tumor. In 

addition to the perimeter, the maximum concavity value (concavity_worst) also shows significant 

impact, indicating that the degree of concavity at the tumor’s edge plays an important role in the 

prediction outcome. The standard error of the area (area_se) also influences the prediction results, 

with higher values typically leading to more severe predicted outcomes. 

In the GBDT model, the largest radius (radius_worst) is considered the most influential feature, 

directly and significantly affecting the prediction results. This feature is closely related to the size of 

the tumor, as shown in Figure 4(b). The most severe concave points (concave_points_worst) and 

concavity (concavity_worst) also show considerable impact. The SHAP value range for these features 

is wide, indicating that the model is particularly sensitive to extreme values, especially the maximum 

radius, which has a significant effect on the prediction results. 

The feature importance in the LightGBM model is focused on the most severe concave points 

(concave_points_worst) and the maximum area (area_worst), as shown in Figure 4(c). These features 

have a significant positive impact on the prediction results. Compared to other models, the maximum 

texture value (texture_worst) has a greater influence on LightGBM, indicating that the model relies 

more heavily on texture features. The SHAP value range for this feature is wide, showing that 

LightGBM is more sensitive to extreme values. 

In the XGBoost model, the maximum texture value (texture_worst) is the most influential feature 

among all, as shown in Figure 4(d). This is not commonly observed in other models. The learning 

approach of XGBoost makes the model more reliant on texture features. Additionally, the most severe 

concave points (concave_points_worst) also play an important role in XGBoost, while the standard 

error of the area (area_se) ranks as one of the most influential features. 
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In summary, although different models place varying levels of importance on different features, 

some features consistently show high importance across all models. For example, the most severe 

concave points (concave_points_worst) and concavity (concavity_worst) are considered key 

predictive factors in all models. Additionally, tumor size-related features, such as the maximum area 

(area_worst) and maximum perimeter (perimeter_worst), also have significant influence in most 

models. These results suggest that the structure and size of the tumor are the most influential factors 

in predictions, while the models differ in their reliance on these features. 

 

    (a)     (b)  (c)   (d) 

Figure 4. SHAP Values (a) CatBoost (b) GBDT (c) LightGBM (d) XGBoost 

3.4 Feature Importance Comparison 

Combining the results of FreeViz visualization, LiNGAM causal inference, and SHAP analysis, 

these three methods consistently highlight similar feature importance rankings, indicating that tumor 

size and boundary morphology are the most influential factors in breast cancer classification. FreeViz 

visualization reveals a significant distinction between malignant and benign tumor samples along 

certain feature dimensions, demonstrating that features such as concave_points_worst, radius_worst, 

and area_worst are crucial for classification decisions. 

LiNGAM causal inference further establishes the causal relationships among these variables, 

showing that tumor area and boundary morphology are closely related, with larger tumors often 

exhibiting more concave boundary points. This insight reinforces the idea that these variables are 

central to predicting malignant tumors. The causal links also suggest that the tumor's structural 

characteristics directly influence its classification. 

SHAP analysis quantifies the impact of these features on different machine learning models and 

finds that regardless of the model, concave_points_worst and concavity_worst consistently emerge 

as the most influential features. This underscores the central role of boundary concavity 

characteristics in diagnosis, demonstrating their key contribution to model predictions across all 

models. 
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4. Conclusions  

This study demonstrates a high level of consistency in feature importance across three 

methods—FreeViz visualization, SHAP analysis, and LiNGAM causal inference which not only 

enhances the reliability of the diagnostic results but also improves the transparency of model 

decisions. By integrating interpretability techniques, the model’s decision-making process is 

transformed from a traditional "black-box" approach into a more explainable framework rooted in 

clinically meaningful features.The convergence of results across diverse techniques reinforces the 

robustness of the identified key predictors, particularly tumor size, shape irregularity, and boundary 

morphology. These characteristics consistently emerged as critical factors in distinguishing malignant 

from benign tumors, confirming their clinical relevance and diagnostic significance. 

Moreover, the varying sensitivity of machine learning models to specific features reflects the 

inherent biases and priorities of each algorithm, offering insight into model behavior. Understanding 

these tendencies supports model selection and tuning while guiding clinicians in integrating AI tools 

into diagnostic workflows. More broadly, this research underscores the potential of explainable AI to 

bridge the gap between computational models and clinical practice. By enhancing interpretability and 

transparency, medical professionals can build greater trust in AI systems, encouraging their adoption 

in real-world healthcare. Additionally, the identified feature patterns lay a foundation for future 

research in biomarker discovery, personalized medicine, and hybrid diagnostic systems that combine 

data-driven insights with clinical expertise. 

Ultimately, this work contributes to the advancement of trustworthy machine learning in 

oncology, and offers both theoretical and practical implications for improving diagnostic accuracy, 

model accountability, and clinical decision-making. 

5. Future Work 

AWhile this study demonstrated strong performance on the Wisconsin Breast Cancer Dataset 

(WBCD), the dataset is relatively small and consists of structured numerical data, lacking imaging 

information and diverse patient characteristics. This may limit the model’s applicability and 

generalizability in real clinical settings. Therefore, future work should extend to unstructured and 

multimodal clinical data—such as mammography, ultrasound, and histopathology slides—to evaluate 

the model’s stability and interpretability across different data types. 

In addition, incorporating strategies such as self-supervised learning, transfer learning, and 

multi-center data analysis can further enhance the model’s adaptability and robustness under various 

clinical conditions. Finally, collaboration with clinicians for real-world testing will help assess the 

feasibility and practical utility of the proposed framework within clinical decision support systems. 

These extensions will help validate the model's transferability and clinical value, promote 

trustworthy AI applications in breast cancer diagnosis, and lay a foundation for future 

interdisciplinary integration. 
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