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ABSTRACT 

This paper presents a comparative analysis of six semantic segmentation models for rice seedling 

and weed identification: SegNet, EfficientNet-SegNet, MobileNet-SegNet, DeepLabV3-ResNet50, 

DeepLabV3-ResNet101, and SegFormer. Motivated by the need for automated solutions in precision 

agriculture to reduce labor, improve crop management, and reduce herbicide usage, this study 

addresses the challenges of identifying morphologically similar and spatially mixed weeds and rice 

seedlings. The aim was to evaluate the segmentation performance and deployment feasibility under 

class imbalance and complex background conditions typical of paddy field imagery. The metrics 

include pixel accuracy, mean Intersection over Union (mIoU), per-class IoU, model complexity, and 

inference efficiency. SegNet achieved the highest mIoU (0.7204) and outperformed CED-Net 

(0.7105). MobileNet-SegNet balances the accuracy and speed, whereas SegFormer delivers 

competitive accuracy with the lowest parameter count and FLOPs. Paired t-tests (p < 0.0001) 

confirmed the statistical significance of the performance differences, offering practical insights for 

selecting models in resource-constrained agricultural settings. 

Keywords: Semantic segmentation, Weed detection, Precision agriculture, Model efficiency, Deep 

learning 

1.Introduction 

Weed proliferation in paddy fields remains a critical obstacle to agricultural productivity, 

particularly in Taiwan, where rice is the primary food source. The presence of weeds not only 

compromises crop yield, but also deteriorates rice quality. Conventional control strategies such as the 

use of chemical herbicides may pose serious risks to ecological systems and human health. 

Consequently, the integration of precision agriculture techniques, especially deep-learning-based 

semantic segmentation, has emerged as a promising and environmentally sustainable approach for 

accurate weed detection and management in rice cultivation [1]. 

Precision agriculture is a technology- and information-based farm management system aimed at 

accurately monitoring field climate and soil conditions and assessing the effectiveness of cultivation 

practices and their impact on crop growth. Its goals include reducing resource waste, stabilizing 

production quality, generating economic profit, and protecting the ecological environment, thereby 
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promoting sustainable development of agriculture [2]. 

Weed control plays a vital, yet challenging, role in paddy field management. Weeds compete 

with rice for sunlight, water, and nutrients, leading to reduced crop yield. Common highly competitive 

weeds include Monochoria vaginalis, Echinochloa crus-galli, and Sagittaria trifolia [3]. Traditional 

weed control methods primarily rely on the manual removal and application of chemical herbicides. 

However, these methods face challenges, such as labor intensity, environmental pollution, and 

negative impacts on non-target organisms. 

With the advancement of artificial intelligence (AI) technologies, deep learning has shown 

increasing value in agricultural image analysis. Deep learning techniques can process and analyze 

various agricultural data sources, including remote sensing imagery, meteorological data, soil 

information, and crop growth conditions. These capabilities contribute to optimizing agricultural 

production, enabling precise resource management, and improving crop yields. Semantic 

segmentation, a subfield of deep learning, can classify every pixel in an image, allowing for the 

precise identification of crops and weeds. This provides a novel technical approach for weed 

management in paddy fields [4]. 

Ma et al. (2019) proposed a SegNet-based model and provided a high-quality dataset for 

agricultural image processing [5]. Khan et al. (2020) introduced a cascaded encoder-decoder network, 

CED-Net, which was further improved by existing methods and significantly enhanced the mean 

Intersection over Union (mIoU) [6]. The motivation and objective of this study was to investigate the 

performance of both mainstream and state-of-the-art segmentation models in distinguishing rice 

seedlings from weeds. By comparing the pixel accuracy and mean IoU across different models, this 

study aims to provide practical insights for future applications in agricultural automation. Ultimately, 

this will contribute to the advancement of smart agriculture, enhance production efficiency, and 

support sustainable agricultural development. 

2. Dataset Description 

2.1 Data Source 

This study utilized the publicly available semantic segmentation dataset of rice seedlings and 

weeds provided by Ma et al. (2019) [7]. The dataset consisted of RGB images captured in paddy 

fields located in Jiangmen, Guangdong Province, China. Each image was manually annotated into 

three categories: background, rice seedling, and weed. 

Class 1 (rice seedlings): Rice sprouts grown in paddy fields. 

Class 2 (Background): This includes water surfaces, soil, and miscellaneous objects. 

Class 3 (weeds): Non-rice plants within the paddy field. 

Class 4 (Other): Rare or ambiguous regions that do not clearly belong to these three categories. 

In this study, only the first three classes—rice seedlings, background, and weeds— were 

considered for analysis because they are directly relevant to the target task of rice weed discrimination. 

Pixels labeled as Class 4 were excluded during model training and evaluation to ensure that the focus 

remained on agriculturally significant categories. 

2.2 Data Processing 
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The original image resolution was 3648 × 2048 pixels, which is relatively large and may lead to 

memory exhaustion when fed directly into neural networks, potentially hindering the training process. 

To address this issue, each image was cropped into eight smaller patches with a resolution of 912 × 

1024 pixels. This cropping strategy yielded 224 valid images that were used for both training and 

testing. Each cropped image is paired with its corresponding ground-truth annotation map, ensuring 

accurate pixel-level labeling for the segmentation task. 

To facilitate the generalization ability of the model, the dataset was randomly split into a training 

set and testing set at an 80:20 ratio. Specifically, 180 images were designated for training, whereas 

the remaining 44 images were used for testing. Given that background pixels represent over 80% of 

the total pixels in the images, there exists a significant class imbalance, which could negatively affect 

the model's performance, especially in correctly identifying smaller, less frequent classes, such as 

rice seedlings and weeds. To mitigate this, a weighted cross-entropy loss function was employed, 

which assigned higher weights to underrepresented classes. This adjustment ensured that the model 

was more sensitive to these minority classes during training. Furthermore, to optimize the 

convergence speed and model stability, mean-standard deviation normalization was applied to the 

pixel values, scaling them into a standard range, and enhancing the efficiency of the training process. 

2.3 Introduction to Deep Learning Models Used 

 2.3.1 SegNet 

SegNet is a semantic segmentation model based on a Fully Convolutional Network (FCN) that 

adopts an encoder-decoder architecture [8]. The encoder utilizes the first 13 convolutional layers of 

VGG16 to extract the image features, whereas the decoder progressively reconstructs the image from 

these features. The key innovation of SegNet is the use of max-pooling indices during the upsampling 

process, which helps preserve edge information and improves segmentation accuracy. As an earlier 

foundational model, SegNet has been widely recognized and extensively applied in the field of 

semantic segmentation. Its relatively simple architecture makes it easy to implement and effective 

across various image segmentation tasks. Therefore, SegNet was selected as the baseline model to 

facilitate the evaluation of performance improvements in the other models. 

2.3.2 EfficientNet 

In resource-constrained environments, lightweight models are of significant importance. 

EfficientNet was designed to reduce computational complexity and improve runtime efficiency, 

thereby meeting the demands of real-world applications [9]. 

 EfficientNet comprises a family of convolutional neural networks optimized through an 

automated architecture search and a compound scaling strategy, achieving high efficiency in terms 

of both parameter count and computational cost. By employing EfficientNet as the encoder in SegNet, 

it is possible to retain the model performance while significantly reducing the number of parameters 

and the demand for computational resources. 

2.3.3 MobileNet 

In agricultural automation and drone-based applications, computational resources are often 

limited. MobileNet is a lightweight convolutional neural network designed for mobile and embedded 

devices. It reduces the number of parameters and computational load using depthwise separable 

convolutions [10]. Employing MobileNet as the encoder in SegNet can further reduce the resource 
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requirements, making the model suitable for deployment on devices with limited computational 

capabilities. 

2.3.4 DeepLabv3_ResNet50 and ResNet101 

 DeepLabv3 is an advanced semantic segmentation model that employs atrous convolution to 

expand the receptive field of the convolutional kernels, thereby capturing more contextual 

information [11]. ResNet50 and ResNet101 serve as the backbone networks for DeepLabv3, utilizing 

residual connections to alleviate the vanishing gradient problem in deep networks and enhance the 

learning capability of the model. The combination of DeepLabv3 with ResNet’s deep feature 

extraction capabilities enables a superior performance in complex semantic segmentation tasks. These 

models are particularly useful for evaluating the effectiveness of deep networks in distinguishing rice 

seedlings from weeds, particularly in scenarios with complex backgrounds and detailed patterns. 

2.3.5 SegFormer 

 In recent years, transformers have achieved remarkable success in natural language processing, 

and their application in image processing has garnered increasing attention. Introducing SegFormer 

allows for the exploration of the potential of transformer architectures in rice seedling and weed 

recognition and enables comparison with traditional convolutional models. 

SegFormer is a semantic segmentation model based on transformer architecture, which leverages the 

powerful global feature modeling capability of transformers to capture long-range dependencies in 

images [12]. 

 This study selected a diverse range of representative deep learning models, ranging from 

foundational architectures to lightweight designs, and from deep convolutional networks to 

transformer-based frameworks, to comprehensively evaluate their effectiveness in rice seedling and 

weed recognition and to provide a reference for future applications in agricultural automation. 

3. Experimental Results and Discussion 

3.1 Overall Model Performance Comparison 

The following section presents a comparison of the performance of each model on the test set, 

including Pixel Accuracy (ACC) and Mean Intersection over Union (mIoU). 

Table 1. Overall performance of each model on the test set 

Model ACC (mean ± std) mIoU (mean ± std) 

SegNet 0.9486 ± 0.0238 0.7204 ± 0.0560 

EfficientNetSegNet 0.9368 ± 0.0258 0.6898 ± 0.0543 

MobileNetSegNet 0.9379 ± 0.0251 0.6914 ± 0.0516 

DeepLabV3-ResNet50 0.8932 ± 0.0445 0.5479 ± 0.0894 
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DeepLabV3-ResNet101 0.8534 ± 0.0531 0.3283 ± 0.0424 

SegFormer 0.9218 ± 0.0347 0.6471 ± 0.0707 

CED-Net [6] - 0.7105 

In terms of the overall performance, SegNet demonstrated the most stable and superior results 

in the segmentation of rice seedlings and weeds, achieving a pixel accuracy of 0.9486 and a mean 

IoU of 0.7204. These results suggest that, with appropriate adjustments, this architecture can 

effectively balance fine boundary preservation with the overall recognition accuracy. In comparison, 

although EfficientNet-SegNet and MobileNet-SegNet performed slightly lower on both metrics 

(achieving 0.9368 / 0.6898 and 0.9379 / 0.6914, respectively), they still maintained a satisfactory 

prediction level. Furthermore, their lightweight characteristics render them particularly suitable for 

deployment in agricultural environments with limited computational resources. 

On the other hand, SegFormer achieved a pixel accuracy of 0.9218 and a mean IoU of 0.6471, 

indicating that the transformer architecture has significant potential for capturing long-range 

dependencies in images. With further optimization of the training strategies and loss function 

weighting, there remains considerable room for performance improvement. 

Regarding the DeepLabV3 models, both ResNet50 and ResNet101 variants underperformed 

significantly in comparison to the other models. Specifically, DeepLabV3-ResNet50 achieved a pixel 

accuracy of 0.8932 and a mean IoU of 0.5479, whereas DeepLabV3-ResNet101 showed even poorer 

performance with an mIoU of only 0.3283. One possible reason for this underperformance could be 

the high computational complexity and model size associated with these architectures, especially in 

comparison to more lightweight alternatives, such as MobileNet-SegNet. The depth and complexity 

of ResNet50 and ResNet101 may lead to difficulties in convergence when trained on relatively small 

datasets, as the model may overfit or fail to effectively learn relevant features from paddy field images. 

Additionally, the original DeepLabV3 architecture, despite being powerful for general segmentation 

tasks, might not be well suited to the specific task of paddy field segmentation, where fine-grained 

differences between rice seedlings and weeds need to be captured. This indicates the need for further 

architectural adjustments or training strategies tailored to the nuances of agricultural imaging. 

To further illustrate the prediction differences among the models on actual images, Figures 1 

and 2 present the original images, ground truth labels, and predicted outputs under scenarios where 

rice seedlings and weeds coexist. Figure 1 includes a variety of weed species alongside rice seedlings, 

providing a comprehensive test of model performance, whereas Figure 2 depicts a simpler and more 

field-realistic scenario. 
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Figure 1. A scenario where rice seedlings and weeds coexist, showing segmentation results of 

different models for rice and weed identification (green indicates rice seedlings, red indicates weeds). 

(a) Original image; (b) Ground truth annotation. (c)–(h) show the prediction results of SegNet, 

EfficientNet-SegNet, MobileNet-SegNet, DeepLabv3 ResNet50, DeepLabv3 ResNet101, and 

SegFormer, respectively. 

 

Figure 2. Another scenario where rice seedlings and weeds coexist, showing segmentation results of 

different models for rice and weed identification (green indicates rice seedlings, red indicates weeds). 

(a) Original image; (b) Ground truth annotation. (c)–(h) show the prediction results of SegNet, 

EfficientNet-SegNet, MobileNet-SegNet, DeepLabv3 ResNet50, DeepLabv3 ResNet101, and 

SegFormer, respectively. 

It is worth noting that the number of pixels in Class 1 (rice seedlings), Class 2 (background), and 
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Class 3 (weeds) are 98,077, 727,848, and 45,610, respectively. The background class (Class 2) 

accounts for 83.5% of all pixels, while rice seedlings and weeds account for only 11.2% and 5.2%, 

respectively. Under such a severely imbalanced distribution, a model predicting the entire image as 

background would still achieve approximately 83.5% pixel accuracy. In this context, the result of 

DeepLabv3 ResNet101 reaches only 85.34%, which is nearly equivalent to predicting all pixels as 

background. A similar outcome is observed for DeepLabv3 ResNet50.This suggests that due to the 

overwhelming presence of background pixels in paddy field images (around 83.5%), the model tends 

to overfit toward predicting background during training. This overfitting occurs because the model's 

optimization process gravitates toward minimizing the loss caused by the abundant background class, 

neglecting the minority classes (rice seedlings and weeds). Moreover, if the hyperparameter settings 

of atrous convolutions are not well adapted to such highly imbalanced and boundary-sensitive 

scenarios, the model may fail to effectively learn minority classes, such as weeds, which require more 

precise boundary delineation. The observed behavior is further validated by visual inspection of the 

predicted outputs in Figures 1 and 2. In Figure 1, where multiple weed species coexist with rice 

seedlings, DeepLabv3 models fail to properly segment the weeds, often classifying them as 

background, which aligns with the statistical data. The segmentation boundaries between rice 

seedlings and weeds are poorly defined, indicating that the model's inability to properly handle class 

imbalances led to poor performance in segmenting these smaller, less frequent classes. Similarly, in 

Figure 2, a simpler scenario with fewer weed species shows that even in this less complex setting, the 

model still struggles with the boundary delineation, further emphasizing the difficulty of handling 

highly imbalanced pixel distributions in paddy field images. 

3.2 IoU Analysis by Class 

Table 2. IoU Performance of Each Model for Rice Seedlings, Background, and Weeds 

Model Class 1(Seedlings)IoU Class 2 (Background) IoU Class 3 (Weeds)IoU 

SegNet 0.5871 0.9006 0.6735 

EfficientNet- 

SegNet 

0.5353 0.8887 0.6453 

MobileNet- 

SegNet 

0.5424 0.8893 0.6424 

Deeplabv3- 

Resnet50 

0.4090 0.8556 0.3790 

Deeplabv3-

Resnet101 

0.1656 0.7950 0.0243 

Segformer 0.5143 0.9075 0.5195 

Due to the high proportion of Class 2 (background) pixels in the dataset, the segmentation of 
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background is relatively easier for the models, with most achieving IoU scores above 0.79, and some 

models even surpassing 0.90. In contrast, Class 1 (rice seedlings) and Class 3 (weeds) exhibit 

moderate to low IoU values, highlighting the difficulty models face in distinguishing these smaller 

and morphologically similar classes. This is particularly evident in the low performance on weeds, 

which are often indistinguishable from rice seedlings due to their fine structures and similarity in 

appearance. 

Notably, DeepLabv3 ResNet101 achieves an extremely low IoU of 0.0243 for weeds, suggesting 

that it largely failed to learn discriminative features for this class. This aligns with its overall poor 

performance in terms of mIoU, where it struggles significantly with class imbalance. Its tendency to 

predict the background class predominates, leaving the minority classes underrepresented. 

While SegFormer shows a higher overall performance with an IoU of 0.5195 for weeds and a 

strong background IoU of 0.9075, its performance in distinguishing weeds from rice seedlings in 

complex scenarios remains suboptimal. Despite its ability to handle background segmentation well, 

SegFormer struggles in regions where rice seedlings and weeds are densely mixed. This is particularly 

evident in scenarios like the one presented in Figure 3, where rice seedlings and weeds coexist in 

close proximity. The model's prediction results show that while SegFormer can segment background 

effectively and handle large areas of rice seedlings, it faces challenges when attempting to segment 

weeds in such intricate settings. 

The case in Figure 3 illustrates these difficulties more clearly. In this high-density situation, 

where weeds and rice seedlings are intermixed, the models, including SegFormer, tend to blur the 

boundaries between these classes. The fine-grained structures of weeds are particularly difficult to 

delineate from rice seedlings, leading to reduced accuracy in segmentation. Thus, while SegFormer’s 

transformer-based architecture holds promise in handling global dependencies, it still faces 

limitations in distinguishing fine details, particularly when the two classes share highly similar 

features in complex, dense environments. 

 

Figure 3. High-density mixing between rice seedlings and weeds, illustrating the difficulty in 
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distinguishing fine weed structures within a shared region. (a) Original image; (b) Ground truth 

annotation. (c)–(h) show the prediction results of SegNet, EfficientNet-SegNet, MobileNet-SegNet, 

DeepLabv3 ResNet50, DeepLabv3 ResNet101, and SegFormer, respectively. 

In summary, the models, while capable of segmenting the background efficiently, still struggle 

with the finer details of rice seedlings and weeds. The performance of SegFormer highlights both its 

strengths and weaknesses, particularly in complex segmentation tasks where fine-grained class 

differentiation is required. Further improvements in model architectures and training strategies are 

needed to enhance performance in these challenging scenarios. 

3.3 Model Efficiency and Lightweight Design 

In addition to accuracy and segmentation performance, the practicality of deploying deep 

learning models in real-world agricultural settings greatly depends on computational efficiency and 

model size. To this end, we evaluated each model based on the following indicators: parameter count, 

floating-point operations (FLOPs), model size, and average inference time per image. These metrics 

provide critical insights into the trade-off between accuracy and efficiency. Table 3 presents a 

summary of the efficiency evaluations of the model. 

Table 3. Model Complexity and Inference Efficiency 

Model Params FLOPs Size (MB) Inference Time (ms) 

SegNet 16.29M 356.57G 62.21 80.41 

EfficientNetSegNet 11.46M 82.72G 44.00 20.38 

MobileNetSegNet 8.95M 73.83G 34.33 13.96 

DeepLabV3-ResNet50 42.00M 619.20G 160.56 134.03 

DeepLabV3-ResNet101 60.99M 897.10G 233.32 217.84 

SegFormer 3.72M 24.17G 14.26 42.39 

The results show that while SegNet achieved the highest accuracy (ACC = 0.9486, mIoU = 

0.7204), its model size and inference time were comparatively larger (62.21MB, 80.41ms). In contrast, 

MobileNetSegNet demonstrated a compelling balance between efficiency and accuracy, achieving 

93.79% ACC and 0.6914 mIoU with a significantly smaller model size (34.33MB) and faster 

inference speed (13.96ms). SegFormer stands out as the most compact model, with only 3.72M 

parameters and a model size of 14.26MB, while maintaining a respectable 0.6471 mIoU. These 

characteristics make it suitable for edge deployment, especially in UAVs or portable agricultural 

devices. In contrast, DeepLabV3 models exhibit high computational cost and memory requirements, 

with DeepLabV3-ResNet101 requiring over 897G FLOPs and 233MB storage, making them less 
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suitable for real-time or embedded applications. 

3.4 Interpretation of t-test Results 

Table 4. Paired t-test Results (SegNet vs Others) 

Compared Model ACC (t / p) mIoU (t / p) 

EfficientNetSegNet t = 12.76, p < 0.0001 t = 13.48, p < 0.0001 

MobileNetSegNet t = 11.20, p < 0.0001 t = 11.04, p < 0.0001 

DeepLabV3-ResNet50 t = 12.15, p < 0.0001 t = 13.56, p < 0.0001 

DeepLabV3-ResNet101 t = 14.59, p < 0.0001 t = 39.56, p < 0.0001 

SegFormer t = 9.34, p < 0.0001 t = 7.89, p < 0.0001 

The paired t-test results presented in Table 4 statistically validate the performance differences 

observed in Table 1. All comparisons against SegNet yielded extremely high t-values and 

corresponding p-values of less than 0.0001, indicating that the differences in both pixel accuracy and 

mean IoU are statistically significant. 

Among the models, DeepLabV3-ResNet101 exhibited the largest performance gap from SegNet, 

particularly in the mean IoU (t = 39.56), reflecting its inability to generalize well in this domain. 

Conversely, SegFormer showed the smallest t-values (t = 9.34 ACC, t = 7.89 for mIoU), suggesting 

that it is the most competitive among the compared models, despite its lightweight design. 

These results reinforce the conclusion that SegNet achieves superior segmentation 

performance across metrics and that its advantage is not due to random variation but is statistically 

robust. Therefore, although lightweight models offer deployment benefits, they may incur trade-offs 

in segmentation precision, which must be carefully balanced depending on the application scenario. 

4. Conclusion and Future Work 

The results of this study demonstrated the feasibility of applying deep learning to weed 

segmentation in paddy fields. SegNet achieved the highest segmentation accuracy, excelling in both 

pixel accuracy (ACC) and mean Intersection over Union (mIoU). However, lightweight models, such 

as MobileNet-SegNet and SegFormer, offer significant advantages in terms of model size and 

inference efficiency, making them well-suited for deployment on resource-constrained platforms, 

such as agricultural drones, mobile robotic systems, and portable edge devices. 

In particular, SegFormer delivered competitive accuracy despite having the lowest parameter 

count and FLOPs, making it a strong candidate for real-time agricultural applications where 

computational efficiency is critical. Similarly, MobileNet-SegNet struck a favorable balance between 

speed and accuracy, further supporting its deployment in low-power embedded systems. SegNet’s 
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superior performance underscores the value of hyperparameter optimization in maintaining boundary 

fidelity, which is vital in fine-grained vegetation segmentation. 

Several specific deployment scenarios can be envisioned to enhance real-world applicability. 

Drone-based weed management systems can utilize real-time segmentation for targeted herbicide 

spraying, thereby reducing chemical use. Autonomous ground vehicles equipped with on-device 

weed-recognition models can conduct real-time weed detection and spot treatment. Edge-computing 

modules embedded in smart sprayers or field robots can further enable responsive weeding operations 

without the need for cloud connectivity. 

However, this study had several limitations. The dataset was collected from a single 

geographic region under stable environmental conditions, which may limit its generalizability. The 

impact of domain shift arising from variations in climate, soil background, or rice cultivars was not 

investigated. Additionally, smallholder farms may face barriers to adopting such systems because of 

hardware costs, integration complexity, and limited technical support. 

Future work should address these challenges by expanding datasets across different regions 

and growing seasons, investigating domain adaptation strategies, and exploring hybrid CNN–

Transformer architectures to enhance generalization. Incorporating semi-supervised or weakly 

supervised learning can also reduce the high cost of manual labeling. Ultimately, integrating 

segmentation models into automated systems for precision spraying, field surveillance, and yield 

forecasting can advance smart agriculture, optimize resource usage, and support sustainable farming 

practices. 
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