Journal of Information and Computing (JIC), 2025, 3(3), 37-58.

A Multi-Level LSTM-K-Means Deep Learning Framework for
Robust Stock Prediction and Risk-Controlled Quantitative Investment

Sangbing Tsai'", Jaheer Mukthar.KP 2
YInternational Engineering and Technology Institute, Hong Kong; klj0418@gmail.com
2Kristu Jayanti College Autonomous Bengaluru, India; jaheermukthar@gmail.com
*Corresponding Author: klj0418@gmail.com
DOI: https://doi.org/10.30211/J1C.202503.013
Submitted: Aug. 03, 2025 Accepted: Sep. 23, 2025

ABSTRACT

In recent years, the stock market has attracted increasing attention. The inherent volatility of
stock prices, often influenced by national and social policies, poses significant challenges for
investors seeking profitable returns. With the rapid development of artificial intelligence, computers
have demonstrated outstanding capabilities in handling complex mathematical problems.
Consequently, efforts to leverage computational power to analyze and predict stock market trends
have been growing. However, existing methods suffer from limited long-term sequence modeling
capabilities and struggle to select candidate factors that align with individual investment preferences
from a vast array of features. To address these issues, this paper proposes a deep learning factor-based
comprehensive prediction model combining LSTM and K-Means. The multi-level LSTM-K-Means
integrated prediction approach overcomes traditional neural networks’ shortcomings in processing
long sequences and nonlinear data by incorporating stock returns and volatility to accurately identify
potential high-quality stocks. Furthermore, a multi-factor scoring stock selection strategy, coupled
with a fixed-percentage stop-profit and stop-loss mechanism, is designed to effectively control trading
risks and enhance the robustness and profitability of quantitative investment. Experimental results
demonstrate that the proposed method alleviates gradient vanishing problems, optimizes stock
selection and risk management processes, and provides strong support for investors to achieve excess
returns.

Keywords: Stock prediction; K-means clustering; Quantitative investment

1. Introduction

Stock price prediction has long been a research hotspot in the field of finance. With the changes
in the international landscape and the increasing complexity of the global financial environment,
accurately predicting stock prices is critical for personal financial management and national economic
stability[1], [2], [3]. However, the stock market is influenced by a variety of complex factors,
including economic conditions, political events, and market sentiment. Quantitative investment has
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gained widespread attention and application in global financial markets. This trend is driven by the
rapid development of big data technologies and the continuous improvement of algorithms and
hardware performance, which enable efficient collection, storage, and processing of vast amounts of
data generated in financial markets[4], [5], [6]. The core of quantitative investment lies in combining
theory with practical trading. By constructing mathematical models and applying statistical analysis
methods, quantitative investors are able to identify potential patterns in the market and convert them
into actual trading strategies, thereby optimizing investment returns. The key to successful trading is
establishing clear execution logic, using computer programs and algorithmic trading technologies to
automatically execute pre-set trading decisions, avoiding emotional fluctuations and human
interference, and thus enhancing the accuracy and efficiency of trading.

The central idea behind portfolio optimization is how to achieve high returns while minimizing
risk in the stock market, which is the primary goal of every investor. The method to achieve portfolio
optimization is by grouping stocks and employing different capital investment proportions among
different stocks to maximize profit and minimize risk. In 1952, Markowitz proposed a mean-variance
model to optimize portfolios. Investors can use this model to obtain the expected return at the
minimum risk[7], [8]. Since its introduction, this model has attracted widespread attention in both
academia and the financial industry and has been extensively applied in financial research. However,
the Markowitz theory also has some limitations, such as its high sensitivity to historical prices and its
inability to incorporate subjective opinions of investors. To overcome these problems, Fama proposed
the Efficient Market Hypothesis[9], which argues that it is impossible to predict future stock prices
and beat the market because stock prices fully reflect all relevant information. However, many
scholars have challenged this view, suggesting that stock prices are partially predictable and began
using algorithms capable of modeling the stock market.

In the financial market, the goal of investors is to achieve profit. If private or institutional
investors can accurately predict market behavior, they will be able to consistently obtain higher risk-
adjusted returns than the market[10], [11]. With the continuous development of machine learning-
based forecasting methods, an increasing number of financial problems have been effectively solved.
In machine learning, research is generally divided into shallow learning and deep learning. Shallow
learning originated in the 1920s with the introduction of the Back-propagation algorithm for artificial
neural networks, which facilitated the widespread application of statistical-based machine learning
algorithms[12]. Although early artificial neural networks were called Multi-Layer Perceptrons[13],
due to the difficulty in training multi-layer networks, shallow models with only one hidden layer were
typically constructed. In 2006, Hinton proposed deep learning algorithms, significantly enhancing the
capabilities of neural networks and marking the rise of deep learning in both academia and
industry[14]. This development has led to the adoption of deep learning and other computational
intelligence methods to create accurate stock market prediction models. Currently, nonlinear
prediction models primarily include deep learning-based artificial neural networks, machine
learning's Random Forest model, the Prophet model, and Generalized Additive Models[15] in
statistical learning. As a typical nonlinear method, artificial neural networks excel at processing
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nonlinear, discontinuous, and high-frequency multi-dimensional data, making them widely used in
financial forecasting. However, traditional shallow artificial neural networks face several limitations
when applied to financial forecasting, such as susceptibility to overfitting, which leads to poor
performance on out-of-sample data, potential issues like vanishing or exploding gradients during
optimization that limit the network’s learning capacity, and difficulty in finding global optima,
affecting overall model performance. In recent years, researchers have focused on improving the
structure and training algorithms of artificial neural networks, employing more complex network
structures, introducing regularization techniques, and optimizing algorithms to effectively address
challenges such as overfitting, vanishing gradients, and global optimization, thereby improving the
prediction accuracy and stability of the models.

As a classical method in deep learning, Long Short-Term Memory networks (LSTM)[16] have
demonstrated remarkable capability in capturing long-term dependencies in sequential data. The core
advantage of LSTM lies in its ability to effectively model nonlinear features and complex interactions
in financial time-series data, fully exploiting sequential information and enabling predictions on high-
dimensional, non-stationary data that are challenging for traditional statistical models and shallow
machine learning methods[17]. Compared with conventional artificial neural networks, LSTM offers
several notable benefits: first, its unsupervised layer-wise feature extraction enhances feature
representation, allowing the model to capture more complex functional mappings and nonlinear
relationships; second, LSTM exhibits strong generalization ability, improving prediction accuracy on
the training set while maintaining robustness and adaptability on out-of-sample data. Nevertheless,
financial markets encompass numerous potential influencing factors, which often exhibit highly
nonlinear coupling and dynamic interactions, making the identification and selection of effective
factors a challenging task. Although existing methods can accomplish basic forecasting to some
extent, they struggle to fully capture the intrinsic complexity and long-term dependency structures of
large-scale, multidimensional, and multi-frequency financial data, thereby limiting prediction
accuracy and robustness. In recent years, researchers have increasingly explored integrating LSTM
with attention mechanisms, graph neural networks, and hybrid deep models, aiming to enhance the
modeling of long-term dependencies and complex nonlinear patterns in financial time series, and
provide more reliable tools for precise forecasting and intelligent investment decision-making.

To address these issues, we propose a deep learning factor integration prediction model based
on LSTM-K-Means, aimed at improving the accuracy of stock price forecasting and investment
returns. By combining multiple LSTM layers, we are able to extract features from different levels and
learn the temporal relationships, thus enhancing the model’s ability to express stock price sequences,
especially in capturing potential nonlinear patterns. To further improve prediction accuracy, we also
introduce the K-means clustering algorithm as an auxiliary analysis tool to cluster the data processed
by the LSTM model and classify stocks based on characteristics such as stock returns and volatility.
This strategy helps us identify stocks with strong upward momentum, thus optimizing the investment
portfolio. In addition, we combine a multi-factor scoring stock selection model with a fixed-
percentage stop-loss and take-profit strategy to propose a comprehensive quantitative investment
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method. In this method, the multi-factor scoring stock selection model identifies the most promising
investment factors by comparing multiple financial indicators, while the fixed-percentage stop-loss
and take-profit strategy helps us control risks and protect the portfolio from significant losses. By
combining these two strategies with the LSTM model, we not only enhance prediction accuracy but
also provide investors with effective risk control and return growth strategies, aiming to achieve long-
term "excess returns."

Our research contributions are mainly reflected in the following aspects: first, the multi-level
LSTM model enhances the learning ability of stock time-series data; second, the combination of the
K-means clustering algorithm optimizes the stock selection process; third, the proposed
comprehensive quantitative investment method effectively improves the accuracy of investment
decisions through multi-factor scoring stock selection and stop-loss/take-profit strategies; finally, by
combining the LSTM model with quantitative strategies, we provide an effective risk control and
return growth solution, aimed at enabling investors to achieve long-term excess returns.

2. Literature Review

2.1 LSTM-based Stock Prediction Models

Stock price prediction remains a critical and challenging task in financial research due to the
complex and nonlinear nature of market dynamics. Among various deep learning architectures, Long
Short-Term Memory (LSTM) networks have gained substantial attention for their ability to capture
temporal dependencies in sequential data. Numerous hybrid models combining LSTM with other
techniques have been proposed to improve prediction accuracy and robustness. For instance,
SACLSTM [18] integrates Convolutional Neural Networks (CNN) with LSTM by constructing
sequential arrays of historical data and indicators, where CNN extracts features fed into LSTM for
time series forecasting. Gao et al. [19] developed a multifactor model utilizing technical indicators,
investor sentiment, and financial data, employing dimensionality reduction methods such as LASSO
and PCA to validate the effectiveness of LSTM and GRU networks. Bhandari et al. [20] compared
single-layer and multi-layer LSTM models for predicting next-day closing prices of the S&P 500
index, finding superior performance with the single-layer architecture. AMV-LSTM [21] enhances
stability and generalization by optimizing gating structures and incorporating attention mechanisms
alongside Adam optimization to mitigate overfitting and instability issues. Prabakar et al. [22]
proposed a hybrid model combining feature selection and LSTM to improve prediction accuracy by
reducing dimensionality with a selected set of 15 indicators. WCN-LSTM [23] integrates market,
industry, and stock-related news classification with weighted sentiment analysis to strengthen
sequence learning capability. Burak et al. [24] introduced an LSTM model optimized via Artificial
Rabbit Optimization (ARO), demonstrating improved accuracy over other neural networks on DJIA
data. Baek et al. [25] employed a Genetic Algorithm (GA) to optimize a CNN-LSTM hybrid model
for next-day stock price prediction, utilizing 20 days of historical price and technical data. Yong et
al. [26] combined Graph Convolutional Networks (GCN) with LSTM to leverage capital flow
features and graph-structured stock relationships for more precise price trend predictions. Muhammad
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et al. [27] proposed a hybrid approach integrating improved Empirical Mode Decomposition (EMD)
with LSTM, using Akima spline interpolation to decompose noisy stock data into intrinsic mode
functions (IMFs) for enhanced nonlinear volatility prediction. Lastly, LSTM-BO-LightGBM [28]
synergizes multi-layer bidirectional LSTM with Bayesian-optimized LightGBM, achieving superior
time series feature extraction and parameter tuning, resulting in highly accurate stock price fluctuation
forecasts across multiple assets.

Despite recent advances in LSTM-based hybrid forecasting models, several critical challenges
remain. First, many models require substantial computational resources due to complex network
architectures or multi-step processing pipelines, limiting their applicability in high-frequency or real-
time trading scenarios. Second, although algorithmic integration can improve prediction accuracy,
such hybrid strategies often lack interpretability, making it difficult for investors or decision-makers
to understand the underlying prediction logic and risk sources, thereby reducing model transparency
and trustworthiness. Third, existing approaches predominantly focus on historical prices and
technical indicators, while underutilizing alternative or unstructured data sources such as
macroeconomic Vvariables, social sentiment, and financial news, which often carry additional
informational value that can significantly enhance predictive comprehensiveness and robustness.
Furthermore, risk management mechanisms and adaptive strategies are seldom embedded within
these forecasting frameworks, constraining their practical utility in highly dynamic and uncertain
financial markets. Future research should prioritize the development of lightweight, efficient, and
interpretable LSTM-based hybrid forecasting systems, integrating multi-source heterogeneous data,
risk control mechanisms, and adaptive learning strategies to improve stability, generalization, and
practical applicability in complex financial environments.

2.2 ARIMA in Stock Market

Stock price prediction has been a critical area of research in financial time series analysis, with
the ARIMA (AutoRegressive Integrated Moving Average) model being one of the most widely
applied statistical tools. Several studies have employed ARIMA and its variants to forecast stock
prices across different markets and sectors. Meher et al.[29] applied the ARIMA model to
pharmaceutical stocks in India’s NIFTY100 index, first confirming data stationarity using the
Augmented Dickey-Fuller (ADF) test, then selecting optimal AR and MA terms based on ACF and
PACEF plots, and finally choosing best-fit models according to volatility, adjusted R2 and AIC criteria.
Similarly, Mashadihasanli et al.[30] utilized ARIMA to predict monthly stock indices on the Istanbul
Stock Exchange, confirming stationarity before testing multiple AR and MA parameter combinations
to identify the best model via goodness-of-fit and prediction errors. Dadhich et al.[31] focused on
India’s BSE and NSE indices, employing ADF tests for stationarity and ACF/PACF analyses to
determine candidate ARIMA parameters. Ashok et al.[32] combined ARIMA modeling with LSTM
networks using Tata Global Beverages stock data, demonstrating ARIMA’s effectiveness in short-
term forecasting but showing LSTM’s superior accuracy overall. Kobiela et al.[33] compared
ARIMA and LSTM models on NASDAQ stock prices, revealing that ARIMA outperforms LSTM
when relying solely on historical prices, especially for long-term forecasts. Other advancements
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include hybrid approaches such as the ARIMA T model by Pokou et al.[34], which accounts for fat-
tailed financial data distributions, ensemble ARIMA-LSTM models by Verma et al.[35], and adaptive
wavelet-based hybrid models integrating LSTM and ARIMAX-GARCH components proposed by
Zolfaghari et al.[36], enhancing multi-scale volatility and price prediction accuracy.

However, ARIMA-based models still face several inherent limitations. First, ARIMA assumes
linearity and stationarity in the data, which often fails to capture the nonlinear, complex dynamics
and structural breaks inherent in financial markets. In addition, the requirement for data stationarity
typically necessitates differencing or transformation procedures, which may result in the loss of
valuable information. ARIMA models also struggle to incorporate external factors or adapt to
changing market regimes, often requiring substantial adjustments to function effectively across
different market conditions. Although hybrid models that combine ARIMA with machine learning or
deep learning techniques partially mitigate these issues, challenges remain in optimizing model
complexity, enhancing robustness under diverse market conditions, and maintaining interpretability.
Therefore, there is an urgent need to develop more flexible, adaptive, and high-accuracy forecasting
frameworks capable of better capturing the complex behavior patterns of stock price movements.

2.3 CNN in Stock Market Prediction

Accurate stock price prediction remains a critical and challenging area of research within
financial markets. Traditional time series models like ARIMA have been widely used but often
struggle with the nonlinear, high-frequency, and multifactorial nature of stock price movements.
Recent advances in deep learning have led to the development of hybrid models that integrate ARIMA
with neural networks and other machine learning techniques to improve predictive accuracy and
robustness. For instance, CAGTRADE [37] combines convolutional neural networks (CNN),
attention mechanisms, and gated recurrent units (GRU) to dynamically weight input sequences for
multi-index short-term trend forecasting. Das et al. [38] integrate ensemble empirical mode
decomposition (EEMD), ensemble CNN, and Twitter sentiment analysis to robustly predict stock
prices by decomposing signals and fusing multiple predictive features. You et al. [39] propose a CNN-
GRU framework for market sentiment analysis and risk warning using extensive web text data,
capturing local patterns and temporal emotional dynamics. Jagadesh et al. [40] utilize wavelet
transform preprocessing, dandelion optimization algorithm (DOA) for feature selection, and a 3D-
CNN-GRU hybrid model optimized by blood coagulation algorithm (BCA) for spatial-temporal stock
prediction. CLATT[41] incorporates CNN, bidirectional LSTM, and attention mechanisms to model
short-term stock correlations with dynamic weighting of temporal features. Woojung et al. [42]
combine TimeGAN for time series data augmentation and 3D-CNN for capturing multidimensional
temporal-spatial dependencies in the futures market. Somkunwar et al. [43] develop a CNN and
multivariate linear regression hybrid for accurate stock valuation on the NSE NIFTY index. Khattak
et al.[44] enhance cryptocurrency trend prediction by integrating Fibonacci technical indicators with
CNN-LSTM hybrid networks, implementing a six-stage prediction and evaluation system with multi-
class trend intensity classification. [45-48]
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Despite significant progress, existing ARIMA-based hybrid models continue to exhibit several
critical limitations. These models often rely on extensive data preprocessing and intricate feature
engineering, which constrains scalability and reduces adaptability in rapidly evolving market
environments. While hybridization improves the extraction of nonlinear patterns, many models
remain limited in their capacity to integrate heterogeneous data sources, including market sentiment,
macroeconomic indicators, and alternative unstructured data, which are increasingly recognized as
essential for robust financial forecasting. Furthermore, most approaches emphasize short-term
prediction accuracy, providing limited capability to capture long-term dependencies, structural breaks,
or regime shifts inherent in financial markets. A persistent trade-off between model complexity and
interpretability further hampers real-time deployment and actionable decision-making. Future
research should focus on designing flexible, interpretable, and multi-modal predictive frameworks
that leverage heterogeneous data, incorporate adaptive learning mechanisms, and effectively capture
both short-term dynamics and long-term dependencies, thereby enhancing robustness and practical
utility in complex, volatile financial environments.

3. Methodology

Considering the different analysis requirements of stock data, this paper proposes a deep learning
factor integration prediction model based on LSTM-K-Means. The model combines the LSTM
network with the K-Means algorithm, aiming to predict the closing price of the target stock while
also using data clustering to intuitively discover the stock's upward trend and purchase
recommendation. The overall framework of the model is shown in Figure 1.
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Figure 1. Overall framework diagram of the LSTM-K-Means network

The deep learning factor integration prediction model based on LSTM-K-Means combines
LSTM and K-Means algorithms to achieve accurate predictions of future stock movements through
deep learning methods while also assisting investors in identifying potential investment opportunities
through clustering analysis. The model begins by preprocessing the stock data, including missing
value handling, outlier correction, and data normalization, to ensure the quality and consistency of
the data. The preprocessed data includes fundamental and technical factors. The fundamental factors,
based on monthly data, include earnings per share, operating income per share, operating profit per
share, retained earnings per share, and net profit growth rate, which are used in multi-factor regression
stock selection. The technical factors, based on weekly data, include the highest price per share and
the closing price, which are used as input to the LSTM model for stock price prediction. The LSTM
model captures long-term dependencies in time-series data, improving prediction accuracy, especially
when handling nonlinear and long-span stock data. At the same time, the K-Means clustering
algorithm partitions the data into multiple clusters, helping to identify stocks with similar trends and
characteristics, thereby revealing market behavior patterns and providing guidance for portfolio
optimization. Ultimately, the prediction results from the LSTM model show the upward trend and
expected returns of the target stock, while the K-Means clustering analysis reveals the stock's
recommendation level and similarity, helping investors make more informed decisions and maximize
their investment portfolio.

3.1 Data Processing

For the LSTM model, data processing involves several essential steps. In the first step, missing
values in the stock data are handled. These missing values usually arise due to market closures during
weekends or holidays, causing data gaps. To improve prediction accuracy, it is necessary to handle
these missing values by either deleting them or performing imputation, depending on the specific
situation. The second step focuses on data normalization. Given the differences in the magnitudes of
the features, and the fact that the speed of gradient descent during training is proportional to the
magnitude of the features, Min-Max normalization is applied to scale the data to the range [0, 1]. This
transformation not only accelerates the model's convergence speed but also improves prediction
accuracy. The normalization formula is given by:

X —min(X)

norm(X) = max(X) — min(X)

The third step involves data reconstruction. The dataset is first divided into the input (x) and
output (y), where the input x is used to predict y. This process transforms the data into a time-series
format and reframes it as a supervised learning problem. Subsequently, the list-type data is converted
into array format, and the two-dimensional data is transformed into a three-dimensional structure.
The input for the LSTM model requires a three-dimensional array of the form (samples, timesteps,
features), where "samples” represent the number of data instances, "timesteps” refer to the time steps
in the sequence, and "features” denote the number of variables. At this point, both x\_train and x\_test
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are still two-dimensional arrays of shape (samples, timesteps=60), and since only the closing prices
are analyzed, an additional feature dimension is added.

For the K-Means data processing, the data is first formatted by applying the normalization
procedure described earlier and converting it into a NumPYy array format for compatibility with the
K-Means algorithm. In addition, any NaN values in the data are removed and replaced with zero,
which ensures that the clustering process is not negatively affected by missing data points.

3.2 Two-Layer LSTM Architecture

We designed a two-layer LSTM structure, which provides a higher degree of fit while
maintaining a reasonable balance between model complexity and training difficulty. The main
structure is shown in Figure 2.
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After the data is input into the two-layer LSTM model, it passes sequentially through the pre-set
LSTM neurons, outputting vectors of the corresponding dimensions. After the processing in the first
layer is completed, the data is passed through a Dropout layer that randomly discards 20\% of the
data to prevent overfitting, and then the remaining data is input into the second LSTM layer. Both
layers of the LSTM have the same number of neurons. The output of each layer is passed through a
fully connected layer with a single neuron, generating the output used to plot the target stock price
chart. To optimize the model's performance, the Adam optimizer is used, and the root mean square
error is employed as the loss function to evaluate the model's prediction accuracy.
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Figure 2. Two layer LSTM model structure
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3.3 Effective Factor Selection and Model Optimization

In quantitative investing, the effectiveness of factors is critical for constructing robust investment
models and achieving superior returns. Effective factors typically refer to variables that are
statistically significant and economically meaningful in relation to stock returns, offering valuable
insights into market behavior or asset characteristics. These factors can stem from various dimensions,
such as fundamental metrics (e.g., price-to-earnings ratio, price-to-book ratio, earnings growth),
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technical indicators (e.g., moving averages, momentum indicators, volatility), macroeconomic factors
(e.g., market return, interest rates), and style factors (e.g., value, momentum, quality). In this study,
we consider factors' stability, implementability, and interpretability when selecting them, building a
candidate factor pool and employing a systematic process for screening and evaluating these factors.

To improve the predictive performance of the LSTM model on stock returns, the preliminary
factor screening combines both statistical analysis and machine learning methods. Statistical
techniques, such as linear regression, information coefficient (IC), and information ratio (IR), are
employed to quantify the relationship between factors and returns. Machine learning algorithms, such
as decision trees, random forests, and Lasso regression, are applied for feature selection in large factor
sets. This paper selects 30 candidate factors, including both financial and technical factors, and
conducts empirical tests on a subset of these factors. Financial factors, extracted on a monthly basis
from the cross-sectional perspective, include earnings per share, operating income per share, profit
margins, and return on equity. Technical factors are derived from the time-series perspective on a
weekly basis, such as closing prices and high prices over certain periods.

To further evaluate the selected factors, a range of performance metrics is introduced, including
cumulative returns at the lowest and highest quantile, returns over the past month and year, IC mean,
IR mean, factor congestion, and factor valuation. The lowest (highest) quantile cumulative returns
measure the performance difference in low (high) sorted portfolios, assessing the factor's
effectiveness in stratified investing. The IC mean reflects the strength of the linear relationship
between factor signals and future returns, while the IR value quantifies the risk-adjusted return by
considering the stability and volatility of returns. Factor congestion measures the extent to which a
factor is widely applied in the market, helping to avoid risks associated with strategy homogeneity.
Factor valuation reveals the median price-to-book ratio across factor groups, aiding in the
identification of whether the factor is overvalued or undervalued, thereby assisting in asset allocation
decisions.

3.4 Risk Control Strategy

The fixed percentage take-profit and stop-loss risk control strategy used in this paper is a widely
adopted approach in practical trading. When the stock price rises and reaches or exceeds the set take-
profit percentage, the stock is sold to realize the profit. This helps lock in some of the gains and
prevents missed profit opportunities. The selection of the take-profit percentage should be based on
expectations of the stock's potential growth and an assessment of market conditions. Conversely,
when the stock price falls and reaches or drops below the set stop-loss percentage, the stock is sold
to limit further losses. This helps protect the portfolio from substantial losses and assists in managing
investment risk. The choice of the stop-loss percentage should take into account the investor's risk
tolerance and the market's volatility.

The fixed percentage take-profit and stop-loss strategy is characterized by its simple and clear
rules, helping investors avoid emotional decision-making and holding losing positions for extended
periods. However, it is important to note that this strategy may sometimes lead to premature take-
profit or stop-loss actions because it relies solely on fixed percentage levels, without considering the
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specific conditions of the stock or market changes. In this paper, based on market response, the take-
profit and stop-loss percentages are set within the range of 5% to 10%.

4. Experiment description and results

4.1 Data Collection

The NVIDIA stock data used in this study is sourced from the Yahoo Finance platform. This
platform provides rich financial market data, covering historical prices, trading volumes, financial

indicators, and other information for numerous companies worldwide. The data variables used in this
paper are listed in Table 1.

Table 1. Variable Description

Variable Name Variable Description Data Type
Date Specific stock trading date Date
Closing Price Stock price at the end of each trading day Numeric
Opening Price Stock price at the beginning of each trading day Numeric
High Highest price reached during a trading day Numeric
Low Lowest price reached during a trading day Numeric
Trading Volume Number of shares traded during a trading day Numeric
Price Change (Daily The amplitude of stock price change for the day Numeric
Return)
Rolling Volatility Average trend of stock price volatility Numeric
Realized Volatility Mean  More accurate measure of stock price volatility Numeric
Rolling Mean Average trend of stock price Numeric
Upper Band Calculated based on statistical features of stock price, servingasa Numeric
resistance reference level
Lower Band Calculated based on statistical features of stock price, servingasa Numeric
support reference level
Realized Volatility Actual range of stock price volatility within a trading day Numeric

Missing Value Detection Method: The dataset used in this experiment has been checked and
confirmed to be complete, with no missing values. Data normalization was performed using the
MinMaxScaler function. Data reconstruction was performed as follows:

1. Separate the input (x) and output (y).

2. Convert list-type data to array data.

3. Convert two-dimensional data into three-dimensional data structure.

4.2 Experimental Settings
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The proposed framework integrates a Long Short-Term Memory (LSTM) network with a
subsequent K-Means clustering module. The LSTM component comprises two hidden layers: the
input layer receives sequential data with dimensions determined by the number of time steps and
feature size, followed by an LSTM layer with 50 units and a fully connected (Dense) hidden layer.
Each hidden layer incorporates a dropout mechanism with a rate of 0.2, effectively mitigating
overfitting by randomly deactivating 20% of neurons during training. The LSTM layer produces a
50-dimensional output vector, resulting in a two-dimensional output shape of (batch size, number of
units). The layer employs the hyperbolic tangent (tanh) activation function, while the recurrent
activation uses the hard sigmoid function. The recurrent kernel is initialized using the orthogonal
method, the kernel weights follow a Glorot Uniform distribution, and biases are initialized to zero.
The final Dense output layer contains a single neuron, generating a scalar prediction. Model training
is conducted using the Adam optimizer, ensuring efficient and stable parameter updates.

4.3 Experimental Settings
In this study, we employ eleven evaluation metrics to comprehensively assess the performance
of the proposed strategy:
1. Return Rate (Rr): The return rate measures the percentage gain or loss of a stock
investment over a holding period. A positive return indicates profit, while a negative return

indicates a loss. The higher the return percentage, the greater the investor’s gains.

2. Annualized Return (R, ): This metric standardizes the return to an annual basis,
facilitating comparison of long-term performance across different investments. It is
computed by scaling the cumulative return over the holding period to a yearly rate.

3. Benchmark Return (Renen ): The benchmark return serves as a reference for performance
evaluation, representing the average return of a specific market, sector, or portfolio.

4. Alpha («): Alpha quantifies the excess return of an investment relative to the expected
return predicted by asset pricing models, such as the Capital Asset Pricing Model (CAPM).
It is defined as:

=Ry~ (Rs +B(Ry—Ry))

where R, is the portfolio return, Ry is the risk-free rate, Ry is the market return, and 3 is
the portfolio beta.

5. Beta (f): Beta measures the sensitivity of the stock’s returns to market fluctuations,

reflecting systematic risk. Specifically,

_ Cov(Ri,Ry)
p= Var(R,,)

where R; is the stock return and R,, isthe market return.
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10.

11.

o B=1: stock volatility matches the market.
o P>1: stock is more volatile than the market.
o PB<I: stock is less volatile than the market.

Sharpe Ratio (s ): The Sharpe ratio evaluates risk-adjusted return by comparing excess
return over the risk-free rate to the standard deviation of returns:

o _RoRi

%p

where o, is the standard deviation of portfolio returns.

Win Rate (w ): The win rate denotes the proportion of profitable trades within a given
period. A higher win rate indicates greater success in achieving profitable transactions.

Profit-Loss Ratio (pLRr): This ratio compares the average profit of winning trades to the
average loss of losing trades, reflecting the efficiency of the trading strategy.

Return Volatility (o ): Volatility measures the dispersion of returns, commonly expressed

as the standard deviation, and indicates the investment’s risk level.

Information Ratio (1R ): The information ratio assesses active management ability by
comparing excess returns over a benchmark to the tracking error:
IR = Rp - Rbench
OTE

Where o is the standard deviation of the active returns.

Maximum Drawdown (mpp ): Maximum drawdown quantifies the largest peak-to-trough
decline in the portfolio value over a specified period, representing the worst potential loss:

Pk — P
MDD—maXtE[O,T]( peak t]

Ppeak

where P, is the highest portfolio value before time .

These metrics together provide a robust framework to evaluate both the profitability and risk
characteristics of the investment strategy.

4.4 Data Visualization Analysis

In the study of NVIDIA stock data, the visualization of closing price trends serves as a crucial

step for understanding the patterns and behaviors of stock price fluctuations. By processing the raw
data and applying diverse plotting techniques, we can intuitively present the temporal trajectory of
NVIDIA's closing prices, thereby gaining a clear comprehension of its market performance. Such
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visualization not only reveals key characteristics of price movements but also provides a solid
foundation for subsequent research and informed decision-making.

As illustrated in Figure 3, the closing price of NVIDIA stock from 2014 to 2025 exhibits an
overall upward trend, reflecting the company’s sustained growth and market confidence over this
period. Notably, starting from 2024, the rate of increase accelerates significantly, indicating a phase
of rapid appreciation possibly driven by strong financial results, market expansions, or technological
breakthroughs. However, at the beginning of 2025, the stock price shows signs of a downturn,
marking a shift in market dynamics that may be influenced by broader economic conditions, industry
factors, or investor sentiment.

Closing price trend
—— Closing price
140
120

100

80

Price

60

40

20

2014 2016 2018 2020 2022 2024
Date

Figure 3. Closing price trend

Such visual trend analysis is indispensable for understanding the stock’s historical performance
and volatility, enabling stakeholders to better anticipate future price movements and optimize
investment strategies accordingly.

The closing price represents the final trading price of a stock at the end of each trading day and
serves as a reliable indicator of market conditions. We analyzed the relationships between the closing
price and other indicators, such as average prices and volatility measures computed over different
time periods, and found significant correlations: when these indicators increase, the closing price
tends to rise as well. To visualize these relationships more intuitively, we employed a color-coded
heatmap, where deeper red indicates stronger positive correlation (changes in the same direction) and
deeper blue indicates stronger negative correlation (changes in opposite directions). As shown in
Figure 3, the results show that the closing price is highly correlated with the 7-day, 14-day, and 30-
day average prices and volatility, suggesting that these indicators can effectively assist in predicting
price trends and provide valuable insights for investment analysis.
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Figure 4. Correlation Heatmap Among Various Variables

This heatmap intuitively reveals the intrinsic relationships among various technical indicators
for NVIDIA stock. It is evident that the closing price exhibits a strong positive correlation with
moving averages of different periods, especially the 7-day, 14-day, and 30-day moving averages,
indicating that the moving average system effectively tracks the price trend. Additionally, significant
correlations among moving averages across different time frames suggest consistency between short-
term and long-term price trends. In contrast, volume-related indicators appear relatively independent,
with short-term volume fluctuations showing weak association with the moving average system.
Notably, the MACD indicator demonstrates a close relationship with short-term moving averages,
confirming its practical value in assessing price momentum. Overall, these findings provide critical
insights for constructing quantitative trading strategies, particularly emphasizing the combined use
of moving average systems and momentum indicators.

4.5 Method Comparison

To provide a more intuitive demonstration of the forecasting performance, this experiment
employs both the RNN and ARIMA models to predict the same experimental dataset. The
visualization of the prediction results is presented in the corresponding Figure 5.
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Figure 5. The visualization of the prediction results

When utilizing data within the same temporal range for stock price forecasting, the LSTM model
demonstrates superior predictive performance particularly in the latter period, characterized by a
smoother and more stable forecast curve. In contrast, the RNN model exhibits greater volatility in its
predictions, with numerous extreme points, which may result in shorter holding periods and
comparatively lower returns in practical trading scenarios. Meanwhile, the ARIMA model, as a
traditional time series approach, underperforms when dealing with long-span data, often producing
predictions that approximate a flat line, thereby failing to capture the intricate fluctuations inherent
in stock prices. In summary, due to its higher accuracy and stability, the LSTM model proves to be a
more reliable tool for stock price prediction tasks. These findings highlight the critical importance of
selecting appropriate forecasting models for effective investment decision-making and risk
management.

4.6 Comparison of Results from Quantitative Investment Methods

We focus on analyzing the performance variations of the LSTM model when trained with
datasets of different lengths. By comparing key financial metrics over two periods, 2020-2022 and
2021-2022, we gain a clearer understanding of how training data size affects model efficacy, as well
as the model's robustness and risk-return profile in practical investment decision-making, as shown
in Table 2.
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Table 2. Performance Results of Quantitative Methods Based on a Single Model with Different
Training Periods

Year 2020-2022 2021-2022
Return -8.74% -17.94%
Annualized Return -6.53% -13.59%
Benchmark Return -21.63% -22.94%
Alpha 0.07 -0.01
Beta 0.69 0.72
Sharpe Ratio -0.34 -0.75
Win Rate 0.47 0.51
Profit-Loss Ratio 1.18 0.94
Return Volatility 21.52% 20.64%
Information Ratio 0.05 0.02
Max Drawdown 22.81% 24.8%

The first set of experiments reveals that reducing the training period from two years to one year
results in noticeable changes in the performance of the LSTM-based quantitative investment strategy.
Specifically, the alpha value decreases from 0.09 to 0.02, indicating a reduction in the model’s excess
returns relative to the overall market. The beta value remains relatively stable, suggesting that the
selected stocks maintain consistent market volatility. The Sharpe ratio declines from a positive 0.22
to a negative -0.08, reflecting diminished risk-adjusted returns. Furthermore, the decrease in the
information ratio indicates a reduction in excess returns per unit of risk. These metric changes further
corroborate the superiority of the LSTM model when handling longer time-series data compared to
alternative approaches. The LSTM-based quantitative investment model effectively integrates stock
selection and risk management strategies, demonstrating strong robustness and achieving higher
excess returns at comparable risk levels. This implies that investors utilizing this model can attain
improved investment outcomes under controlled risk conditions.

The candidate stock pool is constructed by selecting stocks predicted to increase by the LSTM
model, which demonstrates a noticeable reduction in both risk control and stock selection
performance compared to the integrated quantitative approach. The experimental results are
summarized in the Table 3.

Table 3. Performance Results of Quantitative Methods Based on LSTM Model with Different
Training Pe-riods
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Year 2020-2022 2021-2022
Return 13.05% -1.88%
Annualized Return 5.63% -0.82%
Benchmark Return -21.63% -22.94%
Alpha 0.09 0.02
Beta 0.25 0.23
Sharpe Ratio 0.22 -0.08
Win Rate 0.22 0.23
Profit-Loss Ratio 0.94 0.88
Return Volatility 20.84% 20.81%
Information Ratio 0.05 0.03
Max Drawdown 19.35% 19.34%

As observed from the Table 3, the returns under the same dataset conditions decreased by
approximately 20%. The alpha value of 0.07 on the 2020-2022 sample set indicates that the LSTM
model's stock selection can still generate excess returns above the market benchmark. The beta values
in both periods are below 1, suggesting that the stocks selected by this strategy exhibit lower volatility
relative to the overall market. Overall, despite some decline in risk control and stock selection efficacy
compared to the comprehensive quantitative method, the LSTM-based stock selection strategy
demonstrates certain advantages. Therefore, incorporating the LSTM model's stock selection
outcomes into investment decision-making processes could potentially achieve market
outperformance.

5. Conclusions

This study addresses the inherent limitations of conventional neural networks in capturing long-
term dependencies and nonlinear dynamics in financial time series, as well as the inefficacy of single-
model approaches in effectively ranking and recommending target stocks. We propose an integrated
deep learning framework that synergistically combines Long Short-Term Memory (LSTM) networks
with K-Means clustering to enhance both stock price prediction and portfolio construction. The
hierarchical LSTM architecture is designed to model complex temporal dependencies and nonlinear
patterns in stock price movements, while the K-Means clustering module facilitates the identification
of stocks with similar return and volatility profiles, thereby enabling more precise stock selection.
The framework further incorporates a multi-factor scoring mechanism to filter candidate stocks,
which are then subjected to rigorous training and forecasting. Investment decisions are informed by
model predictions and complemented with a fixed-percentage stop-loss and take-profit risk
management strategy, mitigating downside risks and preserving portfolio gains. Empirical results
demonstrate that this integrated quantitative investment approach outperforms traditional models,
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delivering superior excess returns and enhanced stability under comparable risk exposures. The
methodology effectively balances predictive accuracy, risk control, and portfolio optimization,
providing a robust tool for investors seeking consistent abnormal returns in dynamic equity markets.

Future research directions aim to further strengthen the proposed quantitative investment
framework. First, integrating alternative deep learning architectures, such as Transformer-based
models, may improve the modeling of long-range dependencies and complex nonlinearities in
financial time series. Second, expanding the factor selection process to incorporate alternative data
sources, including sentiment information extracted from news articles and social media, could enrich
predictive capabilities and enhance portfolio optimization. Third, developing adaptive risk
management strategies that dynamically adjust stop-loss and take-profit thresholds according to
market volatility and regime shifts may enhance strategy robustness. Finally, extending the
framework to multi-asset portfolios and exploring cross-asset correlations could improve
diversification benefits and risk-adjusted returns. Collectively, these advancements will contribute to
the development of more flexible, accurate, and practical quantitative investment systems capable of
navigating increasingly complex financial markets.
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