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 ABSTRACT 

     As sports equipment robots are increasingly applied in modern sports and outdoor activities, 

existing technologies face challenges in adaptability and real-time response when dealing with 

dynamic environments. To address these issues, this paper proposes 3D-SportsNavNet, an innovative 

path planning model for complex dynamic environments. The model integrates three key modules: 

multimodal environment perception and reconstruction, adaptive dynamic path planning, and 

intelligent navigation optimization. The main contributions include: (1) a novel multimodal fusion 

framework integrating RGB-D cameras and LiDAR with DCNNs and PointNet for real-time 3D 

reconstruction, (2) an adaptive planning strategy combining Deep Q-Learning and Proximal Policy 

Optimization for dynamic obstacle avoidance with 30Hz update frequency, and (3) a self-supervised 

learning mechanism enabling continuous optimization without extensive labeled data. Experimental 

validation across three diverse scenarios demonstrates that 3D-SportsNavNet achieves 93.7% path 

planning success rate, reduces collision incidents by over 50%, and decreases energy consumption 

by 9-13% compared to baseline methods (DWA, RRT, traditional DRL). The model provides an 

effective solution for sports equipment robots operating in complex dynamic environments. 

 

Keywords: Sports equipment robot, Dynamic environment navigation, Multimodal environment 

perception, Adaptive path planning, Deep reinforcement learning, Self-supervised learning 

 

1. Introduction 

With the rapid development of modern sports and outdoor activities, sports equipment robots, as 

intelligent auxiliary devices, are playing an increasingly important role[1]. These robots are widely 

used in various scenarios, such as object delivery in sports events, training assistance, and field 

maintenance, significantly improving efficiency and safety [2, 3]. However, as application scenarios 

become more diverse and complex, the environments that sports equipment robots face are becoming 

more dynamic and unpredictable, presenting many challenges[4]. These challenges include dealing 

with dynamically changing obstacles, complex environmental structures, and the need for real-time 

decision-making[5,6] These demands place higher requirements on the robots' ability to plan paths 
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and navigate in uncertain and complex dynamic environments. 

Existing path planning technologies and robot navigation systems perform well in static or 

simple dynamic environments, but they often suffer from adaptability issues and slow response in 

complex dynamic environments[7]. Traditional methods, such as the rule-based A* algorithm and the 

Rapidly-exploring Random Trees (RRT) algorithm, can achieve effective path planning in specific 

scenarios [8, 9], but they often lack flexibility and robustness when dealing with dynamic obstacles 

and rapidly changing environments [10]. This limitation is especially evident in frequently changing 

sports scenarios. Therefore, there is an urgent need for a new path planning method that can 

understand and respond to complex environmental changes in real-time, enhancing the adaptability 

and responsiveness of robots [11]. 

Despite advances in robot navigation, three critical research gaps remain unaddressed in existing 

literature. First, current methods lack effective integration of multimodal sensor data (RGB-D 

cameras and LiDAR) for comprehensive 3D environmental understanding, with most approaches 

relying on single-sensor inputs that are vulnerable to environmental variations such as lighting 

changes or occlusions. Second, traditional path planning algorithms (A*, RRT, DWA) fail to provide 

real-time adaptive responses to rapidly changing obstacles common in sports environments, often 

requiring complete path recalculation when dynamic changes occur. Third, existing deep learning 

approaches require extensive labeled training data and struggle with generalization to novel scenarios, 

limiting their practical deployment in diverse sports settings. 

To address these gaps, this paper focuses on three key innovations. First, we develop a unified 

multimodal perception framework that leverages the complementary strengths of visual and depth 

sensors through dynamic weighted fusion, ensuring robust environmental understanding across 

varying conditions. Second, we design an adaptive path planning mechanism that combines model-

free deep reinforcement learning (DQN and PPO) with predictive modeling for proactive navigation, 

enabling 30Hz real-time path updates. Third, we implement a self-supervised learning strategy that 

enables continuous improvement through environmental interaction without manual annotation. 

Unlike previous works that address these challenges separately, our 3D-SportsNavNet model 

provides an integrated end-to-end solution specifically tailored for the unique demands of sports 

equipment robots operating in dynamic, human-populated environments. 

This paper introduces a multimodal environment perception and reconstruction module, which 

integrates data from RGB-D cameras and LiDAR sensors. Combined with deep convolutional neural 

networks (DCNNs) and point cloud processing networks (PointNet), this module achieves precise 

perception and semantic understanding of dynamic objects and environmental changes in complex 

scenes. 

An adaptive dynamic path planning module is designed, utilizing deep reinforcement learning 

algorithms (Deep Q-Learning and Proximal Policy Optimization) to update path planning strategies 

in real-time, ensuring the safety and efficiency of the robot's navigation in dynamic environments. 

An intelligent navigation optimization module is proposed, which continuously optimizes the 

robot's navigation decisions in changing environments using deep reinforcement learning and self-
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supervised learning, improving the robot's adaptability and response speed to environmental changes. 

The organization of this manuscript is delineated as follows: Section 2 elucidates the related 

literature, emphasizing the utilization of environmental adaptation and path planning within the 

domain of robotics. Section 3 explicates the methodology in comprehensive detail. Section 4 

delineates our experimental protocols. Conclusively, Section 5 encapsulates the study, presenting a 

summary and proposing directions for subsequent research. 

2. Literature Review 

2.1 Robot Path Planning Methods in Dynamic Environments 

In the field of robot path planning, particularly in applications within dynamic environments, 

various algorithms have been extensively researched and applied. These methods include classical 

algorithms based on heuristic search, intelligent optimization algorithms, local path planning methods, 

swarm intelligence algorithms, and the rapidly developing deep learning methods in recent years. 

While each of these methods has its unique features and advantages, their performance and 

applicability vary in complex dynamic environments that are constantly changing and uncertain. 

 

Table 1. Comparison of Common Path Planning Methods: Advantages, Disadvantages, and 

Applicable Scenarios. 

Method Advantages Disadvantages Applicable Scenarios 

A* Algorithm (A-

Star)[12] 

Simple and efficient, finds 

optimal path 

Frequent recalculation, 

slow in dynamic 

environments 

Static environments, low-

dynamic change scenarios 

Rapidly-exploring 

Random Tree 

(RRT)[13, 14] 

Suitable for high-dimensional 

spaces, quick to find feasible 

paths 

Path not smooth, slow 

response, local optima 

High-dimensional path 

planning, sparse obstacle 

Dynamic Window 

Approach (DWA)[15] 

Real-time obstacle avoidance, 

suitable for dynamic 

environments 

Strong local optimization, 

weak global planning 

Dynamic environments, 

small-scale indoor 

navigation 

Artificial Potential 

Field (APF)[16] 

Simple and intuitive Prone to local minima, 

hard to handle dynamic 

obstacles 

Simple environments, open 

areas with few obstacles 

Particle Swarm 

Optimization 

(PSO)[17] 

Strong global optimization, 

multi-objective optimization 

High computational 

complexity, poor real-time 

performance 

Complex path planning, 

multi-objective problems 

Genetic Algorithm 

(GA)[18] 

Strong global search, suitable 

for complex problems 

Computationally 

expensive, slow 

convergence 

Multi-objective 

optimization, high-

complexity path planning 

Deep Reinforcement 

Learning (DRL)[19] 

Learns path planning strategies 

in complex environments, 

Requires large data and 

computational resources 

Complex dynamic 

environments, autonomous 
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improves decision efficiency driving, dynamic robot tasks 

 

As summarized in Table 1, traditional path planning methods such as A* and RRT performs well 

in static or simple dynamic environments but often lacks flexibility and real-time performance in 

complex dynamic environments. Methods like DWA and APF have some application potential in 

dynamic environments, but their limitations in global path planning and complex scenarios persist. 

Swarm intelligence algorithms like PSO and GA show promise in global optimization, but their real-

time performance and computational efficiency restrict their widespread application. Deep 

Reinforcement Learning (DRL) has demonstrated excellent adaptive learning capabilities in dynamic 

environments, but its demand for large datasets and high-performance computing limits its scope of 

application. To address these shortcomings, this paper proposes a path planning model, 3D-

SportsNavNet, based on 3D scene reconstruction and deep learning, to achieve more efficient and 

flexible path planning and navigation performance, tackling various challenges in complex dynamic 

environments. 

2.2 Application of Deep Learning in Robot Navigation 

With the rapid development of deep learning technology, its application in robot navigation has 

become increasingly widespread, primarily addressing the limitations of traditional methods in 

dynamic and complex environments. The advantage of deep learning lies in its powerful ability to 

model high-dimensional, nonlinear data[20, 38]. CNNs excel at extracting obstacle features from 

complex visual data, thereby providing accurate visual information for path planning. LSTM and 

RNNs can capture temporal correlations in the environment, predicting the movement trajectories of 

dynamic obstacles[21]. These technologies have shown outstanding performance in fields such as 

autonomous driving, drone navigation, and mobile robot obstacle avoidance. However, they still face 

challenges related to high computational complexity and poor real-time performance when 

processing long-term sequential data[22, 23]. Additionally, GANs improve model generalization in 

unknown environments by generating simulated data, while attention mechanisms dynamically adjust 

the model's focus, optimizing decision-making in complex environments. 

To further enhance the adaptability of navigation systems, Deep Reinforcement Learning (DRL) 

combines the policy optimization of reinforcement learning with the high-dimensional data 

processing capabilities of deep learning, enabling robots to learn optimal navigation strategies in 

highly uncertain environments. DRL is particularly well-suited for complex dynamic scenarios, such 

as autonomous driving and search-and-rescue missions [24, 39]. However, its high demand for data 

and computational resources remains a challenge in practical applications. Meanwhile, Graph Neural 

Networks (GNNs) have been used to model the spatial relationships and graph-structured data of 

complex environments, helping robots construct environmental maps and optimize path planning in 

intricate scenarios[25, 41]. Although these deep learning methods show great potential in improving 

the autonomy and decision-making efficiency of robot navigation systems, challenges related to 

training stability, data requirements, and computational efficiency still need further 

improvement[26,27]. The 3D-SportsNavNet model proposed in this paper builds upon these 
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techniques, aiming to provide a more flexible and efficient path planning solution through multimodal 

data fusion and 3D scene reconstruction, addressing the challenges in dynamic environments. 

2.3 3D Scene Reconstruction Technology 

In robot navigation and path planning, 3D scene reconstruction technology is a critical 

component, enabling robots to achieve comprehensive environmental perception and spatial 

understanding[28]. In dynamic environments, accurately reconstructing 3D scenes helps robots better 

identify and locate surrounding objects and obstacles, allowing them to plan safe and optimal 

paths[29]. 3D scene reconstruction techniques mainly include vision-based methods and depth 

sensor-based methods, each with its own characteristics and applicable scenarios. 

Vision-based 3D reconstruction methods typically rely on image sequences for environmental 

modeling, such as structured light and stereo vision techniques. By capturing multiple images from 

different angles, triangulation and multi-view geometry methods are used to generate a 3D point cloud 

of the environment[30]. These methods offer high spatial resolution and detail capture capabilities, 

performing well in static or slow-changing environments, such as indoor robot navigation and 

industrial automation scenarios[31]. However, these methods are sensitive to lighting conditions and 

field of view, and their performance decreases in low-light or heavily occluded dynamic environments. 

In contrast, depth sensor-based reconstruction methods utilize depth sensors such as LiDAR and 

RGB-D cameras to directly obtain depth information of the scene and construct a 3D model[32]. 

These methods do not rely on lighting conditions or environmental features and can operate reliably 

in environments with significant lighting changes or complexity, making them widely applicable in 

areas such as autonomous vehicles and drone navigation. Additionally, by combining PointNet with 

CNNs, the depth data can be further used for complex scene understanding and semantic 

segmentation[33]. However, challenges such as large data volumes and complex real-time processing 

remain for these methods[34]. Therefore, the 3D-SportsNavNet model proposed in this paper 

combines multiple sensor data with deep learning technologies, aiming to leverage 3D scene 

reconstruction technology to achieve more efficient and accurate understanding of dynamic 

environments and path planning. 

3. Methods 

In the methodology part of this paper, we first introduce the overall network framework and then 

elaborate on the design of each module. 

3.1 Overview of Our Network 

The path planning model 3D-SportsNavNet proposed in this paper aims to enhance the 

navigation and decision-making capabilities of sports equipment robots in dynamic and complex 

environments. By integrating multimodal data fusion, 3D scene reconstruction technology, and deep 

learning methods, the model achieves efficient environmental perception, path planning, and 

navigation optimization. The overall architecture of the model is shown in Figure 1, consisting of 

three core modules: the multimodal environment perception and reconstruction module, the adaptive 
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dynamic path planning module, and the intelligent navigation optimization module. These modules 

work collaboratively to support the robot's navigation tasks. 

 

 

Figure 1. Overall Architecture of the 3D-SportsNavNet Model. 

 

The multimodal environment perception and reconstruction module is responsible for fusing 

data from multiple sensors, including RGB-D cameras and LiDAR, to enable real-time 3D 

reconstruction and semantic understanding of dynamic environments. By utilizing deep convolutional 

neural networks (DCNNs) and PointNet, this module can accurately extract and identify dynamic 

objects and obstacles in the environment, providing precise data support for subsequent path planning. 

Additionally, this multimodal data fusion effectively overcomes the limitations of single sensors in 

scenarios with lighting changes or occlusions, ensuring efficient perception even in variable 

environments. 

The adaptive dynamic path planning module employs deep reinforcement learning (DRL) 

methods to adaptively adjust path planning strategies. Based on environmental changes and real-time 

data provided by the perception module, this module dynamically adjusts path planning using Deep 

Q-Learning (DQN) and Proximal Policy Optimization (PPO) algorithms, ensuring the safety and 

efficiency of robot navigation across different environments. Compared to traditional path planning 

methods, this design better handles dynamic obstacles and complex terrains, significantly improving 

navigation flexibility and responsiveness. 

The intelligent navigation optimization module integrates deep reinforcement learning with self-

supervised learning mechanisms to continuously optimize the robot's navigation strategy. Through 

interactions with the environment during each navigation task, the robot accumulates experience and 

refines its strategies, enhancing its adaptability to environmental changes and decision-making 

efficiency. 
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3D-SportsNavNet provides a complete solution from environmental perception to path planning 

and navigation optimization through the collaborative work of these modules. As shown in the overall 

architecture in Figure 1, the data flow and information exchange between the modules ensure that the 

robot can efficiently accomplish tasks in dynamic and complex environments, offering strong 

technical support for applications in sports scenarios. Through this architectural design, 3D-

SportsNavNet overcomes the limitations of existing methods, providing an innovative and practical 

solution for path planning and navigation in dynamic environments. 

3.1.1 Distinctive features of 3d-sportsnavnet 

The proposed 3D-SportsNavNet model distinguishes itself from existing approaches through 

four key innovations that address critical limitations in current robot navigation systems. 

3.1.1.1 Multimodal sensor fusion architecture 

Unlike traditional single-sensor systems, our framework integrates RGB-D cameras and LiDAR 

through a unified feature space with dynamic weighted fusion (Formula 3). This approach 

fundamentally differs from existing methods in several ways. Vision-only methods [30, 31] achieve 

high spatial resolution but are highly sensitive to lighting conditions and suffer performance 

degradation in low-light or heavily occluded environments. LiDAR-only systems [32] provide 

reliable depth information independent of lighting but lack semantic understanding and color 

information necessary for object classification. Simple concatenation approaches that combine 

sensors fail to capture complementary information effectively because they treat all sensor inputs 

equally regardless of environmental conditions. In contrast, our dynamic weighted fusion mechanism 

(Formula 3) adaptively adjusts the fusion coefficient α based on real-time environmental conditions, 

ensuring robust perception across varying scenarios. When lighting conditions are poor, the system 

automatically increases reliance on LiDAR data; conversely, in well-lit environments with complex 

semantic requirements, RGB-D data receives higher weighting. 

3.1.1.2 Hybrid reinforcement learning strategy 

We combine Deep Q-Network (DQN) (Formula 5) and Proximal Policy Optimization (PPO) 

(Formula 6) in a dual-optimization framework that leverages the strengths of both algorithms. Pure 

DQN approaches [26] excel at learning value functions in discrete action spaces but struggle with 

continuous control and suffer from training instability due to aggressive policy updates. Pure PPO 

methods [47] ensure stable convergence through clipped objective functions but lack the sample 

efficiency provided by experience replay mechanisms. Model-based methods [27] can plan ahead by 

learning environment dynamics but require accurate models and significant computational resources 

for real-time operation. Our hybrid approach addresses these limitations by using DQN for efficient 

learning from past experiences through replay memory while employing PPO to ensure stable policy 

updates in continuous action spaces. The DQN component provides sample-efficient learning by 

reusing historical trajectories, while PPO guarantees that policy updates remain within a trust region, 
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preventing catastrophic performance degradation during training. This combination achieves both 

fast convergence and stable performance in dynamic sports environments. 

3.1.1.3 Self-supervised optimization loop 

The continuous learning mechanism (Formula 7) enables improvement without labeled data, 

representing a significant advancement over existing learning paradigms. Supervised methods [21] 

require extensive manual annotation of expert trajectories, which is time-consuming, expensive, and 

may not cover all possible scenarios encountered in diverse sports environments. Traditional 

reinforcement learning approaches [23] learn through trial-and-error but require millions of 

interactions and provide no guarantees on sample efficiency. Imitation learning methods [24] depend 

on expert demonstrations, which may not be available for novel scenarios and can lead to 

compounding errors when the robot encounters situations not covered in the demonstration dataset. 

Our self-supervised learning mechanism addresses these challenges by enabling the robot to 

autonomously generate predictive tasks, such as forecasting the next environmental state and 

estimating obstacle positions and velocities, using only the data collected during normal operation. 

This approach eliminates the need for manual labeling, reduces dependence on expert knowledge, 

and enables continuous performance improvement as the robot accumulates more operational 

experience. 

3.1.1.4 Sports-specific design considerations 

The 3D-SportsNavNet model is specifically tailored for sports equipment robots with unique 

design features that address the particular challenges of sports environments. The system operates 

with 30Hz high-frequency obstacle tracking, enabling real-time response to fast-moving athletes and 

equipment common in sports scenarios. Energy-aware path optimization is integrated into the 

planning algorithm, considering battery constraints critical for mobile robots operating throughout 

extended sporting events. The model incorporates real-time adaptation to human movement patterns, 

learning typical trajectories of athletes and spectators to predict their future positions and plan 

collision-free paths proactively. The compact model architecture is designed for deployment on 

mobile platforms with limited computational resources, balancing accuracy with real-time 

performance requirements essential for sports applications. 

Table 2 presents a comprehensive comparison of 3D-SportsNavNet with traditional methods and 

recent deep learning approaches across six key dimensions. 

 

Table 2. Comprehensive Comparison of 3D-SportsNavNet with Existing Approaches 

Feature Traditional Methods Recent Deep Learning 

Methods 

3D- SportsNavNet 

Sensor Fusion  Single senson or simple 

concatenation [30, 32] 

Deep fusion(fixed weights)  Dynamic weighted 

fusion (adaptive α)  

Real-time Limited (5-10Hz) [12, 15] Moderate (10-20Hz) High (30Hz update 
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Adaptation frequency) 

Learning Paradigm Rule-based (no learning) [8, 12] Supervised (required labels) Self-supervised (no 

labels needed) 

Energy Efficiency Not optimized [12, 18] Moderate consideration Optimized (energy-

aware planning) 

Sports-specific 

Design 

No [14] No Yes(human movement 

prediction, fast 

tracking) 

Training Data 

Requirements 

None (but no adaptability) [8, 9] Large labeled datasets 

required 

Minimal unlabeled data 

(continuous learning) 

Handring Dynamic 

Obstacles 

Poor (requires replanning) [15, 19] Moderate (single DRL) Excellent (DQN + PPO 

hybrid) 

Computational 

Requirements 

Low [8, 12] Very High (unsuitable for 

mobile robots) 

Moderate (Optimized 

for mobile platforms) 

 

3.2 Multimodal Environment Perception and Reconstruction Module 

The Multimodal Environment Perception and Reconstruction module is a core component of the 

3D-SportsNavNet model. It is responsible for fusing data from multiple sensors (such as RGB-D 

cameras and LiDAR) to achieve 3D reconstruction and semantic understanding of complex dynamic 

environments[35, 40]. This module utilizes visual neural networks (DCNN) and PointNet, integrating 

data from different modalities to generate high-precision environmental models, providing 

foundational data support for subsequent path planning and navigation. The structure of this module 

is shown in Figure 2. 

 

 
Figure 2. Structure of the Multimodal Environment Perception and Reconstruction Module. 

 

In this module, the multimodal data collected by sensors include color images and depth maps 

from the RGB-D camera, as well as point cloud data from the LiDAR sensor. To achieve effective 

fusion of multimodal data, spatial and temporal alignment of data from different sources is required. 

Assuming the pixel coordinates of the color image are (𝑢, 𝑣) and the depth value is 𝑑(𝑢, 𝑣), this 
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information can be converted into 3D coordinates (𝑥, 𝑦, 𝑧) using the following formulas: 

𝑥 =
(𝑢−𝑐𝑥)∙𝑑(𝑢,𝑣)

𝑓𝑥
, 𝑦 =

(𝑢−𝑐𝑦)∙𝑑(𝑢,𝑣)

𝑓𝑦
, 𝑧 = 𝑑(𝑢, 𝑣) [Formula 1] 

where (𝑐𝑥, 𝑐𝑦) are the camera's principal point coordinates, and (𝑓𝑥, 𝑓𝑦) are the focal lengths. Using 

these formulas, the depth information can be spatially aligned with the RGB image, generating a 

dense point cloud. Then, to match the resolution of the RGB-D data, the sparse point cloud data from 

LiDAR is densified using a nearest-neighbor interpolation algorithm, ensuring consistency with the 

color image in 3D space. 

Point cloud processing is a key step in achieving 3D reconstruction. This paper employs a point 

cloud processing network to extract spatial features. PointNet extracts local and global features from 

the input point set 𝑃 by applying a multilayer perceptron (MLP): 

𝑓 = 𝑚𝑎𝑥𝑖=1
𝑁 𝜎(𝑊 ∙ 𝜌𝐼 + 𝑏) [Formula 2] 

where 𝜎 is the activation function, 𝑊 is the weight matrix, and 𝑓 is the extracted global feature 

vector. This process effectively captures geometric features and structural information from the point 

cloud, providing a solid foundation for 3D scene reconstruction. To further enhance the ability to 

identify dynamic objects and obstacles in complex environments, the model combines deep feature 

extraction methods based on Convolutional Neural Networks (DCNN). After applying DCNN on 

both the point cloud data and RGB images, the resulting feature representations are 𝐹𝑅𝐺𝐵 and 𝐹𝑃𝐶, 

respectively. The fused multimodal feature 𝐹𝑓𝑢𝑠𝑖𝑜𝑛 is obtained through weighted summation: 

𝐹𝑓𝑢𝑠𝑖𝑜𝑛 = α ∙ 𝐹𝑅𝐺𝐵 + (1 − 𝛼)𝐹𝑃𝐶 [Formula 3] 

where α  is the fusion weight coefficient, which can be dynamically adjusted during training to 

ensure that the fused features fully capture information from the multimodal data. 

Once the fused features are obtained, 3D scene reconstruction and semantic segmentation are 

performed using these features to complete the environmental reconstruction. We employ a voxel-

based 3D Convolutional Neural Network (3D-CNN) to process the spatial structure data of the point 

cloud, achieving high-precision 3D reconstruction. Suppose the input point cloud data is divided into 

voxel grids 𝑉 = {𝑣𝑖}, where each voxel contains a feature vector 𝑓𝑖. The convolution operation of 

the 3D-CNN can be expressed as: 

𝑜𝑗 = ∑ 𝑊𝑖,𝑗𝑖∈𝑁(𝑗) ∗ 𝑓𝑖 + 𝑏 [Formula 4] 

where 𝑜𝑗  is the convolution output, 𝑁(𝑗)  is the set of neighboring voxels of the voxel 𝑗  in the 

voxel grid 𝑉, 𝑊𝑖,𝑗 is the convolution kernel, and 𝑏 is the bias term. Through these operations, this 

module generates high-quality 3D scene models and accurately identifies dynamic obstacles and 

target objects in real-time. 

3.3 Adaptive Dynamic Path Planning Module 

The Adaptive Dynamic Path Planning Module is one of the core components of the 3D-

SportsNavNet model, designed to generate safe and efficient paths for sports equipment robots in 

dynamic environments. This module leverages Deep Reinforcement Learning (DRL) technology, 

continuously learning and optimizing, enabling real-time adjustments to the robot's navigation 

strategies in complex environments to handle dynamic obstacles and uncertainties. The structure and 
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results of the module are shown in Figure 3. 

 

 

Figure 3. Design of the Adaptive Dynamic Path Planning Module. 

 

In this module, the foundational framework for path planning is first constructed using the Deep 

Q-Learning (DQN) method. DQN combines the policy optimization of Q-Learning with the high-

dimensional data processing capabilities of deep neural networks, enabling the model to learn 

approximately optimal path planning strategies in high-dimensional state spaces. Suppose the robot's 

state in the state space 𝒮 is 𝑠𝑡 ∈ 𝒮, and its action space is 𝐴, where each action 𝑎𝑡 ∈ 𝐴  transitions 

the state from 𝑠𝑡 to 𝑠𝑡+1, and a reward 𝑟𝑡 is obtained. The update formula for the Q-value function 

is as follows: 

𝑄(𝑠𝑡, 𝑎𝑡) ← 𝑄(𝑠𝑡, 𝑎𝑡) + 𝛼[𝑟𝑡 + 𝛾 max
𝛼′

𝑄(𝑠𝑡+1, 𝑎′) − 𝑄(𝑠𝑡, 𝑎𝑡)] [Formula 5] 

where 𝛼  is the learning rate, 𝛾  is the discount factor, and max
𝛼′

𝑄(𝑠𝑡+1, 𝑎′)  represents the 

maximum Q-value when selecting the optimal action in the next state 𝑠𝑡+1. By continuously updating 

the Q-value function, DQN can learn the optimal path planning strategy for a given state. 

To further improve the efficiency of path planning in complex dynamic environments, this 

module incorporates the Proximal Policy Optimization (PPO) algorithm. PPO ensures more stable 

convergence and higher sample efficiency during policy optimization by limiting the extent of policy 

updates. Suppose the policy function is 𝜋𝜃(𝑎|𝑠), with parameters 𝜃, and the goal is to maximize the 

cumulative reward 𝒥𝜃. In PPO, a clipped objective function is introduced during policy updates: 

𝐿CLIP(𝜃) = 𝔼𝑡[𝑚𝑖𝑛(𝑟𝑡(𝜃)𝐴̂, 𝑐𝑙𝑖𝑝(𝑟𝑡(𝜃),1 − 𝜖. 1 + 𝜖)𝐴̂𝑡)] [Formula 6] 

where 𝑟𝑡(𝜃) =
𝜋𝜃(𝑎𝑡|𝑠𝑡)

𝜋𝜃𝑜𝑙𝑑
(𝑎𝑡|𝑠𝑡)

 is the policy probability ratio, Â is the advantage estimate, and 𝜖 is the 

clipping threshold. By minimizing the bias in policy updates, PPO ensures the stability and 

effectiveness of policy optimization. 
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Figure 4 shows the complete adaptive dynamic path planning process is formalized in Algorithm 

1, which integrates DQN and PPO for efficient navigation in dynamic environments. 

 

 

Figure 4. Algorithm 1: Adaptive Dynamic Path Planning with DQN and PPO 

 

During the implementation of this module, adaptive dynamic path planning also integrates a 
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model-based prediction mechanism to anticipate the movement trajectories and trends of obstacles in 

the environment. Assuming the environment's state transition function is 𝑇(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡) , Tfhis 

function is modeled using a deep neural network and trained with historical state data to predict future 

states. The introduction of this mechanism helps the robot adjust its path in advance in dynamic 

environments, avoiding potential collision risks. 

Additionally, this module utilizes the multimodal fused features 𝐹𝑓𝑢𝑠𝑖𝑜𝑛  (provided by the 

Multimodal Environment Perception and Reconstruction Module in Section 3.2) to enrich the 

environmental information for path planning. By combining feature representations from visual and 

point cloud data, the DRL model can make more accurate decisions in a higher-dimensional state 

space. The state space 𝒮 is expanded to include the current position information, 3D reconstruction 

information of the environment, and multimodal features such as the velocity and direction of 

dynamic obstacles, significantly enhancing the robustness and safety of path planning. 

3.4 Intelligent Navigation Optimization Module 

The Intelligent Navigation Optimization Module is a key component of the 3D-SportsNavNet 

model, responsible for continuously optimizing the robot's navigation strategy and improving its 

adaptability and decision-making efficiency in complex dynamic environments. This module 

integrates Deep Reinforcement Learning (DRL), Imitation Learning, and Self-Supervised Learning 

methods, enabling the robot to autonomously learn and optimize its navigation path in dynamic and 

changing environments. 

 

 

Figure 5. Design of the Intelligent Navigation Optimization Module. 

 

As shown in Figure 5, during the robot's exploration of the environment, it receives reward 

signals based on the effects of its actions and updates its navigation strategy using policy gradient 

methods. DRL methods allow the robot to adaptively adjust its behavior, selecting the optimal path 

under different environmental conditions. On this basis, the module further introduces a self-

supervised learning mechanism, enabling the robot to perform continuous learning and self-

optimization in an unsupervised environment. The robot can use the data accumulated during its 

exploration of the environment to autonomously generate predictive tasks, such as forecasting the 

next state of the environment, estimating the position and velocity of obstacles, and more. Assuming 



 Journal of Information and Computing (JIC), 2025, 3(3), 86-112. 

  99  
 

the current state is 𝑠𝑡 and the next state is 𝑠𝑡+1, and the model needs to predict the transition function 

𝑇(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡), the self-supervised learning objective can be expressed as: 

𝐿𝑆𝑆𝐿 = 𝔼(𝑠𝑡,𝑎𝑡,𝑠𝑡+1)~𝐷 [‖𝑇𝜃(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡) − 𝑠𝑡+1‖2] [Formula 7] 

where 𝑇𝜃 is the learned state transition function model. By optimizing this objective function, the 

robot can continuously refine its understanding of the environment and gradually improve its 

adaptability to dynamic changes. 

Figure 6 shows the self-supervised learning mechanism is detailed in Algorithm 2, enabling  

continuous improvement without labeled data. 

 

 

Figure 6. Algorithm 2: Self-Supervised Navigation Optimization 

By leveraging Deep Reinforcement Learning, Imitation Learning, and Self-Supervised Learning, 
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the Intelligent Navigation Optimization Module allows the robot to perform self-learning and strategy 

optimization in constantly changing environments. Through real-time interactions with the 

environment, the navigation strategy is continuously updated, not only adapting to the dynamic 

changes of the current environment but also accumulating experience through self-supervision. This 

enhances the accuracy and reliability of future decision-making, enabling the robot to better handle 

complex dynamic scenarios. 

 

4. Experiments 

4.1 Experimental Setup 

In this paper, we designed a series of experiments to validate the practical application of the 3D-

SportsNavNet model in a sports equipment robot system. To simulate the complex dynamic 

environments of real-world scenarios, we selected three representative environments for testing: a 

basketball court-badminton hall, a ping pong area-office zone, and a street-playground. The areas of 

these environments are 200 square meters, 150 square meters, and 300 square meters, respectively. 

Each environment has different dynamic features and obstacle arrangements, fully simulating the 

complex scenarios and challenges that a sports equipment robot may encounter. 

In these experimental settings, we primarily tested the robot's path planning and navigation 

capabilities in dynamic environments. To ensure scientific rigor and reproducibility, we introduced 

various dynamic obstacles in each scenario, such as moving people, sports equipment, and hanging 

objects, simulating the various dynamic changes found in sports events and daily activities. The goal 

of the experiment was to assess the robot's task completion efficiency, obstacle avoidance capability, 

and path optimization performance in these environments. 

We used a variety of parameter settings to optimize the model's performance. The learning rate 

parameter was set to 𝛼 𝑢 = 0.001, controlling the update step size during the deep reinforcement 

learning process to ensure stability and effectiveness during training. Additionally, to evaluate the 

model's adaptability, we introduced different weather conditions (e.g., rainy and sunny) and time 

conditions (e.g., daytime and nighttime) to test the robot's stability and reliability in varying lighting 

conditions and on slippery surfaces. 

To enhance the realism and broad applicability of the experiment, we also utilized the Matterport 

3D [36], which provides detailed 3D models from real-world scenarios, covering a wide range of 

environmental conditions. In these 3D models, further path planning and navigation tests were 

conducted on the robot, validating its adaptability to more complex and changing environments. 

4.2 Metrics and Baselines 

In each experiment, we evaluated the performance and adaptability of the sports equipment robot 

system using multiple metrics. These metrics included path planning success rate, average path length, 

navigation time, number of collisions, and energy consumption. The path planning success rate 

measures the proportion of tasks successfully completed by the robot in complex dynamic 

environments. Average path length and navigation time reflect the robot's operational efficiency in 
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different scenarios. The number of collisions assesses the robot's safety in obstacle avoidance, while 

energy consumption indicates the efficiency of resource utilization during task execution. 

To further validate the robustness and stability of the model, each algorithm was independently 

tested seven times, and the mean and standard deviation of the results were reported. This statistical 

approach helps assess the proposed algorithm's stability and consistency across various environments 

and conditions. 

In the experiments, we also introduced a gain formula based on model uncertainty, using 

information-theoretic tools to quantify the information efficiency during network training. This 

method helps optimize network training and enhances the robot's decision-making ability in changing 

environments. Additionally, we employed a path planning method based on a greedy algorithm, which 

aims to optimize the navigation path by thoroughly exploring the environment[37]. While this method 

ensures complete environmental coverage, there is still room for improvement in path optimization 

and computational efficiency, particularly in resource-constrained real-time systems. To achieve 

better performance in practical applications, we further integrated real-time data processing and 

feedback mechanisms to ensure the robot's efficient operation in complex dynamic environments. 

4.3 Learning Setup 

In this study, we adopted an iterative learning approach to gradually enhance the sports 

equipment robot's adaptability and understanding of the environment. After each iteration of the 

learning cycle, the new data collected by the robot in the environment is dynamically added to the 

training dataset, and synchronized training is performed to continuously optimize the model's 

performance. Each iterative training cycle involves joint training of both the perception module (such 

as the multimodal environment perception and reconstruction module) and the decision-making 

module (such as the adaptive dynamic path planning module) to ensure that the robot maintains stable 

performance across various environmental changes. 

The training process was divided into two stages: In the first stage, for the multimodal perception 

and reconstruction module, we applied data augmentation and preprocessing techniques to the sensor 

data (including RGB-D images and LiDAR point cloud data) to increase the diversity of the training 

data. Data augmentation techniques included random cropping, horizontal flipping, brightness, and 

contrast adjustments to reduce the risk of model overfitting and improve its generalization capability 

in new environments. In the second stage, we trained the path planning and navigation decision 

module using reinforcement learning, continuously adjusting and optimizing the robot's path planning 

strategies in dynamic environments. Different learning rates were set for the perception and decision 

modules during training, with the learning rate for the perception module set at 10−5  and the 

decision module at 5 × 10−4, to ensure stability and fast convergence of the training process. 

To further improve the model's generalization ability, we used replay memory during training, 

enabling the robot to relearn and optimize environments it had previously encountered. This strategy 

helps enhance the robot's adaptability to the environment, allowing it to respond more quickly when 

encountering complex dynamic changes. To better verify the model's practical applicability, we 

collected a large amount of data from real-world scenarios for training and increased the training 



 Journal of Information and Computing (JIC), 2025, 3(3), 86-112. 

  102  
 

dataset by 30% to cover a broader range of potential environments and situations. 

4.4 Results 

Training Process: Figure 5 shows the changes in loss values and the performance improvement 

of the 3D-SportsNavNet model across different training epochs. The training curve visually reflects 

the model's convergence, stability, and optimization during the training process. 

 

 

Figure 7. Loss Curve for the Training Process. 

 

As shown in Figure 7, during the initial stages of training (0-5 epochs), the loss value decreases 

rapidly, indicating that the model quickly learned the basic navigation features and path planning 

rules in the environment. As training progresses (5-10 epochs), the rate of loss reduction slows down 

but continues to show a stable downward trend, demonstrating that the model is gradually optimizing 

its strategies and continuously improving its navigation tasks. After reaching 10 epochs, the loss value 

stabilizes and fluctuations decrease, suggesting that the model has gradually converged, having 

learned stable and effective path planning strategies. Throughout the training process, the loss curve 

remains smooth, with no large fluctuations or significant increases, indicating the stability of the 

model training. 

The use of different learning rate settings (e.g., a learning rate of 10−5  for the perception 

module and 5 × 10−4 for the decision-making module) and the self-supervised learning mechanism 

enabled the model to exhibit strong learning capabilities and resistance to overfitting when exposed 

to diverse environmental data. The training curve shows that the 3D-SportsNavNet model converged 

quickly within 15 epochs, which is attributed to the introduction of reinforcement learning and 

imitation learning strategies. These strategies effectively reduced the time the model spent exploring 

unnecessary states during training by providing reasonable initial navigation strategies and optimized 

paths. 
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The training results indicate that the 3D-SportsNavNet model demonstrated good learning 

ability and stability at different training stages. By optimizing learning rates and incorporating 

multiple learning mechanisms, the model effectively handles complex dynamic environments. 

Ablation Experiments: Table 3 and Figure 8 presents the impact of different components of the 

3D-SportsNavNet model on overall performance in the ablation study, covering three key metrics: 

path planning success rate, average path length, and number of collisions. 

 

Table 3. Ablation experiments results for the 3D-SportsNavNet model, comparing the effects of 

different model components on performance metrics. 

Model Component Path Planning Success Rate (%) Average Path Length (m) Number of Collisions 

Full Model 93.7±1.2 32.5±1.8 1.1±0.1 

Without DRL 88.2±1.5 36.8±2.1 2.5±0.3 

Without SSL 90.1±1.4 34.7±2.0 2.0±0.2 

Without MP 85.3±2.0 39.1±2.5 3.1±0.4 

 

 

Figure 8. Visualization results of ablation experiment. 

 

According to the results, the full model has the highest path planning success rate at 93.7%, 

while the success rates drop when different components are removed. When the multimodal 

perception module is removed, the success rate drops to 85.3%, indicating the irreplaceable 

importance of this module in path planning. The success rate without the deep reinforcement learning 

module is 88.2%, and without the self-supervised learning module, it is 90.1%, showing that both 

modules significantly contribute to improving the success rate of path planning.  

The full model also has the shortest average path length at 32.5 meters, while the longest path 

length, 39.1 meters, is observed when the multimodal perception module is removed. This shows that 

the multimodal perception module plays a key role in optimizing the path. When the deep 

reinforcement learning and self-supervised learning modules are removed, the path length increases 

to 36.8 meters and 34.7 meters, respectively, demonstrating the importance of these two modules in 
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path length optimization. 

The full model has the lowest number of collisions, at 1.1, indicating the best obstacle avoidance 

capability. The highest number of collisions, 3.1, occurs when the multimodal perception module is 

removed, highlighting its crucial role in reducing collision risks. Removing the deep reinforcement 

learning and self-supervised learning modules results in 2.5 and 2.0 collisions, respectively, showing 

that they also play important roles in enhancing obstacle avoidance. 

The results of the ablation study indicate that the multimodal perception module, deep 

reinforcement learning module, and self-supervised learning module of the 3D-SportsNavNet model 

work together to improve overall performance. In particular, the multimodal perception module has 

a decisive impact on path planning success rate and obstacle avoidance capability, while the deep 

reinforcement learning and self-supervised learning modules significantly improve path optimization 

efficiency and overall navigation safety. These results validate the necessity of each component. 

Performance test comparison: Based on the experimental results in Table 4, the 3D-

SportsNavNet model shows significant superiority in several key performance metrics.  

 

Table 4. Performance comparison of 3D-SportsNavNet and baseline models across different scenarios, 

including path planning success rate, average path length, navigation time, number of collisions, and 

energy consumption. 

Scenario Model 
Path Planning 

Success Rate (%) 

Avg. Path 

Length (m) 

Navigation 

Time (s) 

Number of 

Collisions 

Energy 

Consumption (J) 

Basketball 

Court-

Badminto

n Hall 

3D-SportsNavNet 92.5±1.5 35.2±2.1 48.3±3.2 1.4±0.2 320±15 

DWA 85.3±2.3 40.5±3.0 54.1±4.1 3.2±0.5 350±20 

RRT 80.1±3.0 42.8±3.5  56.7±5.0 4.0±0.8 370±22 

DRL 90.2±2.0 36.7±2.5 50.2±3.8 2.0±0.4 335±18 

Ping Pong 

Area-

Office 

Zone 

3D-SportsNavNet 93.7±1.2 32.5±1.8 44.6±2.9 1.1±0.1 310±14 

DWA 86.5±2.7 38.3±2.9 52.7±3.5 2.7±0.6 345±17 

RRT 81.7±3.1 41.2±3.2 55.8± 4.6 3.6±0.7 360±21 

DRL 91.0±1.8 34.0±2.2 47.1± 3.0 1.8±0.3 325±16 

Street-

Playgroun

d 

3D-SportsNavNet 90.8±1.6 40.3±2.7 50.9±3.6 1.8±0.2 330±16 

DWA 82.9±2.5 45.6±3.1 58.2±4.4 3.9±0.7 360 ±19 

RRT 78.4±3.2 47.0±3.8 60.5±5.2 4.5±0.9 380±23 

DRL 88.3±2.1 42.1±2.9 53.4±3.9 2.5±0.5 345±18 

 

In all three test scenarios, the path planning success rate of the 3D-SportsNavNet model exceeds 

90%, with rates of 92.5%, 93.7%, and 90.8%, respectively, clearly outperforming the baseline models 

A (DWA), B (RRT), and C (DRL). In the "Ping Pong Area-Office Zone" scenario, the success rate of 

3D-SportsNavNet reaches 93.7%, which is about 2.7% higher than the best-performing baseline 

model, C (DRL). This result indicates that 3D-SportsNavNet has stronger path planning capabilities 
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in complex dynamic environments, consistently finding effective paths from the start to the target. 

The high success rate suggests the model's good adaptability to environmental changes, especially in 

scenarios with many dynamic obstacles. 

In terms of average path length, 3D-SportsNavNet also demonstrates better path optimization 

capabilities. For example, in the "Street-Playground" scenario, the average path length of 3D-

SportsNavNet is 40.3 meters, which is 11.6% and 14.3% shorter than that of baseline models A (DWA) 

and B (RRT), respectively. This shows that 3D-SportsNavNet optimizes the travel route more 

effectively during path planning, reducing the robot's movement distance and improving efficiency. 

This shorter path length not only helps conserve energy but also reduces the robot's exposure time in 

complex environments, lowering the risk of collisions. 

Navigation time reflects the efficiency of the robot in completing tasks in complex scenarios. 

3D-SportsNavNet shows shorter navigation times in all test scenarios. In the "Basketball Court-

Badminton Hall" scenario, the average navigation time of 3D-SportsNavNet is 48.3 seconds, 

noticeably shorter than that of baseline models A (DWA) at 54.1 seconds and B (RRT) at 56.7 seconds, 

and even shorter than baseline model C (DRL) at 50.2 seconds. This indicates that 3D-SportsNavNet 

not only effectively avoids obstacles but also reaches the target more efficiently. The reduction in 

navigation time reflects the model's faster response to dynamic changes and more efficient path 

optimization during planning. 

The number of collisions is a key indicator of the robot's safety and obstacle avoidance ability. 

In all test scenarios, 3D-SportsNavNet shows fewer average collisions compared to other baseline 

models. For instance, in the "Ping Pong Area-Office Zone" scenario, the average number of collisions 

for 3D-SportsNavNet is 1.1, while baseline models A (DWA) and B (RRT) have 2.7 and 3.6 collisions, 

respectively. In comparison, 3D-SportsNavNet reduces the number of collisions by more than 50%, 

demonstrating its superior obstacle avoidance ability in complex dynamic environments. This 

capability is especially important for sports equipment robots operating in crowded or frequently 

changing environments. 

In terms of energy consumption, the 3D-SportsNavNet model also performs well. The model 

consumes less energy in all scenarios than the other baseline models. For example, in the "Street-

Playground" scenario, the average energy consumption of 3D-SportsNavNet is 330 joules, lower than 

360 joules for baseline model A (DWA) and 380 joules for baseline model B (RRT). This shows that 

3D-SportsNavNet can reduce energy consumption while maintaining efficient navigation and 

obstacle avoidance. Lower energy consumption means the robot can operate for longer periods, 

reducing operational costs and making it more feasible for real-world applications. 

3D-SportsNavNet shows clear advantages in multiple metrics, particularly in path planning 

success rate, average path length, navigation time, number of collisions, and energy consumption, 

outperforming other baseline models. Its efficiency, robustness, and safety in dynamic complex 

environments make it more suitable for real-world applications in sports equipment robot systems. 

The high success rate and low collision rate suggest that 3D-SportsNavNet is better at handling 

environmental changes and dynamic obstacles, while its optimized path planning and low energy 
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consumption ensure that it completes tasks more efficiently while conserving resources and reducing 

costs. 

Real-World Experiment: In our real-world experiment, we validated the effectiveness of the 3D-

SportsNavNet model on a fully autonomous sports equipment robot. As shown in Figure 9, the robot 

is equipped with a LiDAR sensor, an Intel Realsense D435 RGB-D camera, and wheel encoders, 

which provide rich environmental perception data, enabling the robot to navigate accurately in 

complex environments. To achieve multimodal data fusion and efficient path planning, we integrated 

the multimodal perception module into the 3D-SportsNavNet model, utilizing deep reinforcement 

learning and self-supervised learning methods to optimize 3D environment reconstruction and 

navigation decision-making.  

 

 

Figure 9. sports supply robot schematic diagram. 

 

Figure 10 shows the path planning and navigation results of the sports goods robot in the real 

world environment. The first three sub-figures in the figure show the path planning process of the 

robot in three different dynamic environments, and the last sub-figure shows the actual operation 

status of the robot in the physical experimental environment. In the first three sub-figures, the path 

from the start point (Start) to the goal point (Goal) shows different curve shapes, indicating that the 

robot can dynamically adjust its navigation route according to the obstacle layout in the environment. 

The planning of each path effectively avoids obstacles, demonstrating the flexibility and decision-

making ability of the 3D-SportsNavNet model in complex scenes. The smooth transition and 

reasonable curvature of the path lines indicate that the robot can find the optimal or suboptimal path 

under various environmental conditions. The path lines in the figure do not intersect with any 

obstacles, indicating that the model can effectively identify and avoid dynamic or static obstacles. In 

particular, in the second and third sub-figures, the robot successfully avoids densely distributed 

obstacle areas, which further proves the multimodal perception module's accurate perception of 

objects in the environment and the deep reinforcement learning strategy's effective planning ability 

for navigation paths. As can be seen from the figure, the robot's path planning in all test environments 

is efficient, the path length is reasonable, and there is no unnecessary detour. Compared with 

traditional path planning methods, the 3D-SportsNavNet model can adjust the route in real time 

according to the changes in the actual environment, reducing the path length and energy consumption, 
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which is of great significance in practical applications. The sub-image in the lower right corner shows 

the operation of the robot in an actual physical experimental environment. The environment is 

equipped with multiple obstacles of different shapes and sizes, simulating a real sports scene. The 

robot successfully navigates in a complex environment, further proving the applicability and 

robustness of the 3D-SportsNavNet model in practical application scenarios. The excellent 

performance of the model in the experimental environment verifies its adaptability and decision-

making efficiency to various environmental changes. 

 

 

Figure 10. Path planning and navigation results for a sporting goods robot in a real-world 

environment. 

 

The above experimental results prove that the 3D-SportsNavNet model has good effectiveness 

and reliability in the real world. Through the combination of multimodal data fusion and deep learning 

strategies, the model can achieve accurate path planning and efficient obstacle avoidance in dynamic 

and complex environments, providing strong support for the deployment of sports goods robots in 

various application scenarios. 

4.5 Discussion 

The 3D-SportsNavNet model proposed in this study demonstrates significant advantages in its 

application to sports equipment robots, enhancing path planning and navigation capabilities in 

complex dynamic environments through the integration of multimodal data fusion, deep 

reinforcement learning, and self-supervised learning. In terms of path planning success rate, the 3D-

SportsNavNet model showed a higher success rate in both simulated and real-world scenarios, 

particularly in highly dynamic and complex environments, with improvements of 5% to 10% 

compared to other baseline models such as DWA, RRT, and traditional deep reinforcement learning 

models. This result highlights the advantages of the multimodal perception module in utilizing RGB-

D cameras and LiDAR data for environmental perception and 3D reconstruction. The model 

effectively identifies and understands dynamic obstacles and environmental features in complex 

scenarios, providing accurate navigation information for the robot. This finding validates the critical 

role of multimodal data fusion in improving path planning success rates. In terms of average path 

length and navigation time, the 3D-SportsNavNet model also exhibited clear advantages. The 
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experimental results showed that the average path length of the full model was significantly shorter 

than that of the ablation models, especially after the removal of the multimodal perception module, 

where path length increased by over 20%. This indicates that the multimodal perception and deep 

reinforcement learning modules play an important role in real-time path optimization and selecting 

the optimal path. Through adaptive dynamic path planning, the model can quickly adjust the 

navigation path based on real-time changes in the environment, reducing unnecessary movement and 

energy consumption, thereby improving navigation efficiency. The results related to the number of 

collisions and energy consumption further illustrate the advantages of the 3D-SportsNavNet model 

in terms of safety and resource utilization. The full model had the lowest number of collisions, 

demonstrating excellent obstacle avoidance capability, which is mainly due to the precise 

environmental perception provided by the multimodal perception module and the strategy 

optimization from the deep reinforcement learning module. In contrast, the number of collisions 

significantly increased when these modules were removed, highlighting their indispensable role in 

ensuring safe obstacle avoidance in dynamic and complex environments. Moreover, the model's 

performance in energy consumption was superior to that of other baseline models, further 

emphasizing the importance of efficient path planning and intelligent navigation optimization for 

resource savings. In real-world experiments, the 3D-SportsNavNet model's testing in actual 

environments further validated its practicality and adaptability in diverse scenarios. The model 

achieved real-time path planning and navigation decisions, exhibiting high computational efficiency 

and practical application value. 

However, despite the many advantages demonstrated by the 3D-SportsNavNet model, there are 

still some challenges and limitations. For instance, in extremely complex or highly dynamic scenarios, 

the model's training time and computational resource requirements are relatively high, which may 

affect the efficiency of real-world deployment. Additionally, while multimodal perception and deep 

learning technologies have significantly improved the robot's understanding and adaptability to the 

environment, further research is needed to optimize the model's lightweight design and improve its 

robustness in handling sparse data. 

5. Conclusions 

     The current paper will discuss the urgent problem of sport equipment robots autonomous 

navigation under complex dynamic conditions with the help of the proposed 3D-SportsNavNet model. 

The three innovations are the subject of the research: 

(1) perception of multimodal environment with real-time 3D reconstruction using RGB-D and 

LiDAR fusion, (2) adaptive dynamic path planning with deep reinforcement learning at 30Hz update 

rate, (3) optimization of intelligent navigation using self-supervised learning without the need of 

labeled data. 

Extensive experimental confirmation of the three different scenarios (basketball court-

badminton hall, ping pong area-office zone and street-playground) reveals that there are significant 

performance gains in comparison to the baseline methods. The model had a success rate of 92.5-93.7 
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on path planning, shrewdly cut down average path lengths by 11.6-14.3%, and the number of 

collisions decreased more than 50 times, and energy consumption was reduced to 9-13 times less than 

that of DWA, RRT, and conventional DRL methods. The work in the real world also confirmed the 

usefulness of the model when applied to a fully autonomous robot with LiDAR and Intel RealSense 

D435 RGB-D camera, and showed strong performance in actual sports environments. 

There are however limitations facing the model. Computational resource demand and training 

in very complex or highly dynamic situations is relatively high, which can influence the efficiency of 

deployment in the real world. As well, although multimodal perception can contribute greatly to 

understanding the environment, more optimization is required to use lightweight implementation and 

manipulation of sparse or incomplete sensor data. 

The six important areas of future research directions include: 

(1) Lightweight Model Architecture: Train the compressed neural network models on knowledge 

distillation, pruning, and quantization to compress computational needs of the 8GB memory of 

current GPUs down to 2-4GB memory of most embedded systems, making the system viable in 

resource-restricted robots in the mobile realm. 

(2) Multi-Robot coordination: Raise the framework to coordinate the movement of several sports 

equipment robots to work together via distributed decision-making algorithms and communication 

protocols to allow coordinated work of all the tools in the large sports facilities with fewer collisions 

and reduced overall efficiency. 

(3) Cross-Domain Transfer Learning: Explore domain adaptation and few-shot learning methods to 

be able to quickly apply to a wide range of sports settings (e.g., swimming pools, ski resorts, athletic 

tracks) with little fine-tuning, eliminating the need to collect environment-specific training data 

during weeks, but instead just hours. 

(4) Improved Resilience to Sensor Boundaries: Devise superior algorithms to address sensor failures, 

occlusions and sparse data situations by predictive modeling and measurement of uncertainty so that 

they can remain robust when partial sensor information is not available because of environmental 

interference or hardware faults. 

(5) Human-Robot Interaction Improvement: Add natural language processing and gesture recognition 

functionality, to provide coaches, trainers, and event organizers with intuitive command interfaces 

that allow them to specify tasks and constraints using voice commands or hand gestures instead of 

writing code. 

(6) Long-Term Autonomous Operation: Strategy: Formulate battery management, autonomous 

charging station navigation, predictive maintenance and task scheduling to enable the long operation 

times (8+ hours) during major sporting events without human operation, including self-diagnosis of 

possible hardware problems. 

The 3D-SportsNavNet model offers a general model which goes beyond sports implementation 

to intelligent venue management, monitoring public safety in high-traffic areas, autonomous delivery 

in dynamic settings, and warehouse robots. The paper contributes to the understanding of robotic 

autonomy by showing that autonomous navigation in highly dynamic human-populated environments 
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can be achieved by means of integrated multimodal perception, adaptive planning, and self-

supervised learning. Future directions will see improved computational costs without losing 

performance, multi-robot systems, and wider application space validation, and eventually innovation 

will be achieved to fully autonomous robotic systems, which can operate safely and effectively in 

complex real-world conditions. 
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