
 Journal of Information and Computing (JIC), 2025, 3(4), 44-63. 

  44  
 

Design and Implementation of FARPM-Net Model for Financial Risk 

Prediction and Automated Auditing in Enterprises 

R. Sudha1*, R. Saranya2, Payal R Kothari3 

1*Associate Professor, Department of Commerce, PSG College of Arts & Science, Coimbatore, India;  

Email: r_sudha@psgcas.ac.in.  

2Assistnat Professor, Department of Computer Science, PSG College of Arts & Science, Coimbatore, India;  

Email:saranya_r@psgcas.ac.in  

3 Research Scholar -PSG College of Arts & Science, Coimbatore. Practicing Cost Accountant & Proprietor-Kothari & 

Co. Email Id: - pragati169@gmail.com 

*Corresponding Author: r_sudha@psgcas.ac.in 

DOI: https://doi.org/10.30211/JIC.202503.018 

Submitted: Oct. 14, 2025    Accepted: Dec. 17, 2025 

ABSTRACT 

This paper addresses the complex demands of enterprise financial risk prediction and automated 

auditing by proposing an innovative deep learning model—FARPM-Net—based on multimodal 

fusion and multi-level temporal modeling. The model integrates a multi-level Mamba module, 

temporal convolutional network (TCN), and an attention-based cross-modal fusion module to achieve 

integration of structured financial data, unstructured textual information, and external market factors, 

while capturing dynamics across multiple time scales. Experimental validation on two public datasets, 

SEC EDGAR 10-K and Yahoo Finance, demonstrates that FARPM-Net attains accuracies of 91.5% 

and 90.2%, respectively, representing a 4.7% improvement over mainstream models; F1 scores 

increase by up to 6.1%, and mean absolute error decreases by more than 16%, showcasing excellent 

capabilities in risk identification. Ablation studies confirm the contributions of each key module to 

the performance, verifying the synergistic advantages of multimodal fusion and multi-level temporal 

modeling. This work enhances the accuracy and stability of financial risk prediction and provides 

technical support for intelligent analysis of multimodal financial data. Future research will focus on 

model optimization, cross-modal fusion strategies, and interpretability to promote practical 

applications in auditing and risk management. 
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1. Introduction 

With the advent of the digital age, the volume of corporate financial data has been steadily 

increasing, presenting challenges to financial auditing and risk prediction. Traditional financial 

auditing methods often rely on manual reviews and static financial statement data, which struggle to 

cope with the dynamic, large-scale nature of financial data. This issue is particularly pronounced with 
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the development of complex business environments such as cross-border e-commerce and globalized 

transactions, where traditional methods are inadequate for real-time response to changing financial 

risks[1]. Therefore, leveraging advanced technologies, especially deep learning techniques, to 

improve the efficiency of financial data auditing and the accuracy of risk prediction has become a 

focal point of current research[1]. 

However, existing financial risk prediction and auditing methods have several limitations[2]. 

Traditional rule-based auditing systems are unable to handle real-time financial data streams and 

unstructured data, and they rely on static financial statements, making it difficult to capture dynamic 

changes in financial data[3]. In recent years, sequential modeling methods such as LSTM and GRU 

have been able to capture temporal dependencies in financial data; however, these methods often 

neglect the fusion of multimodal data and fail to comprehensively consider the impact of 

heterogeneous data, such as text and images, on financial risk[4]. While deep learning methods like 

Transformer and BERT have shown remarkable performance in handling textual data, effectively 

integrating multimodal data, especially in multi-target risk prediction tasks, remains an unresolved 

challenge. Additionally, the application of cutting-edge technologies such as Graph Neural Networks 

(GNN) and self-supervised learning in financial auditing is gradually increasing, yet challenges in 

computational efficiency and scalability persist[5]. 

To address these issues, this paper proposes a financial risk prediction and automated auditing 

method based on the FARPM-Net model. FARPM-Net combines the advantages of Temporal 

Convolutional Networks (TCN) and the Mamba network, effectively handling temporal dependencies 

in financial data. Additionally, through multimodal feature cross-fusion techniques, it enhances the 

model's ability to understand heterogeneous data. The contributions of this paper are primarily 

reflected in the following three aspects: 

⚫ The FARPM-Net model is introduced, combining Temporal Convolutional Networks (TCN) and 

the Mamba network to improve financial risk prediction accuracy. 

⚫ A cross-fusion module for multimodal features is developed to enhance the model's capability to 

handle complex data. 

⚫ An adaptive mechanism is incorporated, boosting the model's stability and flexibility in 

predicting multiple financial risk targets. 

The structure of this paper is organized as follows: Section 2 reviews related research, focusing 

on the limitations of existing financial auditing and risk prediction methods as well as the applications 

of deep learning techniques. Section 3 introduces the design and implementation of the FARPM-Net 

model, including the functions and architecture of its core modules. Section 4 validates the 

effectiveness of the FARPM-Net model through experiments, demonstrating its advantages in 

financial risk prediction. Finally, Section 5 summarizes the work presented in this paper and discusses 

future research directions. 

2. Related work 

2.1 Deep Learning Applications in Financial Auditing and Risk Detection 
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With the widespread application of deep learning, significant progress has been made in the 

fields of financial auditing and risk detection. Graph Convolutional Networks (GCN) have been 

applied to model the complex financial relationships between enterprises, capturing the 

interconnections and capital flows between different companies, thereby improving the accuracy of 

financial risk prediction[6]. However, GCN methods typically require the pre-construction of graph 

structures between enterprises, and when handling large-scale financial data, they incur high 

computational costs, making it difficult to efficiently scale to real-time auditing and prediction tasks. 

Transformer Networks have gained widespread use due to their powerful sequence modeling 

capabilities, especially in handling temporal dependencies in long-term financial data. They have 

shown remarkable performance in text data analysis and natural language processing tasks, but 

transformer models generally rely on large-scale data training and expensive computational resources, 

and they have limited capability in handling nonlinear and non-stationary features in financial data[7]. 

In the domain of anomaly detection, Contrastive Learning has been employed to identify potential 

financial risks by learning the differences between normal and anomalous financial behaviors. 

However, this method often faces the issue of sample imbalance, particularly in financial data, where 

anomalous data is relatively scarce, leading to challenges in effective generalization[8]. The Deep 

Forest model, as an unsupervised learning method, is capable of addressing financial datasets that 

lack labeled data, but it has limitations when it comes to multimodal data fusion and handling complex 

long-term dependencies[9]. Adaptive Generative Models have been used to generate realistic 

financial data to simulate risk scenarios, but the quality and authenticity of generated data remain 

challenges when processing real, dynamically changing financial data[10]. 

Although these methods have made progress, they face limitations in managing long-term 

dependencies, real-time computation, and multiobjective optimization of financial data. The FARPM-

Net model overcomes these challenges by combining TCN and Mamba, and integrating multimodal 

feature cross-fusion techniques. This approach efficiently addresses multimodal data processing, 

time-dependent modeling, and multitarget risk prediction, providing a more accurate solution. 

2.2 Application of Temporal Modeling Techniques in Risk Prediction 

With the rapid development of financial data analysis, an increasing number of studies have 

begun to explore how multimodal data fusion can be applied to risk assessment. Multimodal 

Convolutional Neural Networks (MC-CNN) is a common fusion method that integrates both image 

and structural data in financial reporting and graphical analysis. This method learns common features 

from image and text data to improve risk forecasting performance[11]. Deep learning by cooperation 

is particularly suitable for managing the information from multiple sources of financial data, 

improving the performance of each modal through information exchange between various 

modalities[12]. Multimodal autonomous learning uses the unsupervised learning mechanism to learn 

marmoidal features from automatically unidentified data[13]. Cross-modal Generative Adversarial 

Networks (GANs) is used for financial data for conversion between images and texts, generates more 

diverse synthetic data, and improves the adaptability of the model in the processing of various data 

formats[14]. The change autocoder (AEV) maps the data in various ways in the latent space using its 
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generative capability, and merges the various data features to improve the efficiency and accuracy of 

the financial risk assessment[15]. 

Unlike these methods, FARPM-Net combines TCN and Mamba networks with a cross-fusion 

module for multimodal functions. This approach addresses time dependence and multimodal 

characteristics of financial data, while exploring complex relationships between modalities, greatly 

enhancing the accuracy and adaptability of financial risk forecasting. 

3. Method 

3.1. Overview of Our Model 

The proposed FARPM-Net model is designed for automated corporate financial risk prediction, 

integrating multimodal recognition and hierarchical time modeling. It uses a two-stage hybrid 

architecture to leverage complementary relationships between heterogeneous data sources and model 

both short-term and long-term financial dynamics. Figure 1 shows the FARPM-Net architecture, 

consisting of a front-end multimodal feature extraction and fusion module, and a back-end multi-

level Mamba modeling module. The model effectively captures the heterogeneity and temporal 

dependencies of financial data, enabling end-to-end risk prediction with high scalability and precision. 

 

Figure 1. Overall architecture of the FARPM-Net model. The model consists of a multimodal 

feature extraction and cross-fusion module, and a multi-level Mamba modeling module. 

 

The FARPM-Net model integrates three primary data sources: structured financial time series, 

unstructured textual information, and external auxiliary data. These are processed through three 

separate encoding channels: a TCN encoder for financial time series, a lightweight semantic encoder 

for textual data, and a feature mapping network for external factors. The encoded representations are 

then fused through a cross-modal fusion module using an attention mechanism, generating a unified 

representation. This is fed into the multi-level Mamba module, which captures both short-term (fine-
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grained) and long-term (coarse-grained) temporal dependencies via state-space modeling. The fine-

grained branch models rapid fluctuations, while the coarse-grained branch focuses on quarterly and 

annual trends. The fused outputs are projected and concatenated for risk prediction. FARPM-Net’s 

architecture preserves deep temporal modeling capabilities while incorporating multimodal feature 

fusion, significantly improving the accuracy and robustness of financial risk prediction. It supports 

end-to-end training and can be extended to accommodate more modalities and fine-grained tasks, 

offering strong application potential and generalization ability. 

3.2. Temporal Convolutional Network Encoding Module 

The TCN module in FARPM-Net for modeling structured financial time series is illustrated in 

Figure 2. This module processes time series data of core enterprise operational indicators, such as 

balance sheets, income statements, and cash flow statements, focusing on capturing local fluctuations 

and mid-term trend changes. The TCN model, based on causal and dilated convolutions, employs a 

multi-layer stacking and dilation mechanism to efficiently model locally significant information 

within long historical sequences. Unlike the Mamba module, which emphasizes global modeling, the 

TCN module prioritizes fine-grained expression of short-term dynamics and boundary signals, 

complementing the subsequent temporal path’s ability to model abrupt changes. 

 

Figure 2. Architecture of the TCN encoding module for structured financial time series in FARPM-

Net. 

 

The input raw financial time series is denoted as (Xts={x1
ts,x2

ts,...,xT
ts), where Xt represents the 

financial feature at the t-th time step with dimensionality dts, and the sequence length is T. At the l-

th layer of the TCN, the sequence is modeled using a dilated convolution structure. The output at the 

t-th time step of the l-th layer is ht
(l)

, where Wi
(l)

 denotes the weights of the i-th convolutional kernel, 
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r(l) is the dilation rate of this layer, k is the kernel size, and b
(l)

 is the bias term. The input to the 

current layer is ht
(l-1)

, with the initial input defined as in (1). 

ht
(l)

= ∑ Wi
(l)k−1

i=0 ⋅ h
t−r(l)⋅i

(l−1)
+ b(l) ·························· [Formular 1] 

As the number of network layers increases, the model’s receptive field gradually expands. Let 

R denote the overall receptive field of the model, L be the total number of TCN layers, and r(l) the 

dilation rate at the l-th layer. The receptive field determines the historical time-step range the model 

can utilize at the current moment and serves as a key metric for assessing its modeling capacity as in 

(2). 

R = 1 + (k − 1) ⋅ ∑ r(l)L−1
l=0  ······························· [Formular 2] 

After each convolutional layer, batch normalization and nonlinear activation operations are 

applied to enhance model stability, and residual connections are used to preserve lower-layer input 

information. The tensor 𝐻𝑇𝐶𝑁 represents the time-series embedding generated by the TCN encoder, 

with dimensions T×d', where h
(L)

 denotes the output of the final layer. Here, BN represents the batch 

normalization operation, and ReLU denotes the activation function as in (3). 

𝐻𝑇𝐶𝑁 = ReLU(BN(ℎ(𝐿))) + ℎ(0) ·························· [Formular 3] 

The feature sequence output by this module serves as the temporal modality embedding, which 

is input to the modality fusion module for joint modeling with textual and external information. The 

TCN module excels at capturing sudden changes, short-term fluctuations, and anomalies, 

complementing the Mamba module. While the TCN provides high-resolution, local risk perception, 

the Mamba module models long-term dependencies, enhancing the accuracy and robustness of 

financial risk prediction. 

3.3. Multi-Modal Feature Cross Fusion Module 

The primary task of the multimodal feature cross-fusion module in FARPM-Net is to effectively 

integrate features from three distinct modalities: financial time series, textual information, and 

external auxiliary data. Since these data originate from different sources and exhibit heterogeneous 

representations, fully exploiting their interrelations and complementarities is crucial for improving 

the accuracy of financial risk prediction. The merge module uses an attention mechanism that 

facilitates the exchange of information between modalities and creates an explicit correlation matrix 

that generates a uniform functional expression rich in multisource information. This expression forms 

a solid basis for later time modeling. Figure 3 shows the core of this module. 
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Figure 3. Architecture of the multimodal feature cross-fusion module in FARPM-Net. 

 

Specifically, the features from the three modalities are denoted as financial time series features 

Hts , textual features Htext , and external auxiliary features Hext . Due to differences in their 

dimensionalities and distributions, the module first applies linear transformations to map these feature 

sets into a common feature space. The corresponding weight matrices are Wts, Wtext, and Wext, 

with bias terms bts, btext, and bext, respectively. This operation unifies the feature dimensions of 

the three modalities, facilitating subsequent fusionas in (4)(5)(6). 

𝐻̃𝑡𝑠 = 𝐻𝑡𝑠𝑊𝑡𝑠 + 𝑏𝑡𝑠 ······································· [Formular 4] 

𝐻̃𝑡𝑒𝑥𝑡 = 𝐻𝑡𝑒𝑥𝑡𝑊𝑡𝑒𝑥𝑡 + 𝑏𝑡𝑒𝑥𝑡𝑏𝑡𝑠 ···························· [Formular 5] 

𝐻̃𝑒𝑥𝑡 = 𝐻𝑒𝑥𝑡𝑊𝑒𝑥𝑡 + 𝑏𝑒𝑥𝑡𝑏𝑡𝑠 ······························· [Formular 6] 

Subsequently, the fusion module computes the similarity between different modalities and 

employs an attention mechanism to automatically assign weights, thereby quantifying the influence 
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among modalities. Aij represents the correlation weight matrix between modality i and modality j, 

where d
'
  denotes the feature dimension. The softmax operation ensures normalization of the 

weightsas in (7). 

Aij = softmax (
H̃iH̃j

⊤

√d′
) ····································· [Formular 7] 

Based on the weight matrices, the module performs weighted fusion of features from each 

modality to form richer feature representations. Finally, the fusion module concatenates the weighted 

features from all modalities to obtain the final multimodal fused representation as in (8)(9). 

𝐻̂𝑖 = 𝐴𝑖𝑗𝐻̃𝑗 ················································ [Formular 8] 

𝐻𝑓𝑢𝑠𝑖𝑜𝑛 = Concat(𝐻̂𝑡𝑠, 𝐻̂𝑡𝑒𝑥𝑡 , 𝐻̂𝑒𝑥𝑡) ······················· [Formular 9] 

Through this cross-fusion mechanism, FARPM-Net is able to more comprehensively and 

accurately understand the financial condition of the enterprise and changes in the external 

environment, thereby significantly improving the effectiveness of financial risk prediction. This 

module not only facilitates collaborative modeling across modalities but also provides the model with 

a more representative and robust multimodal feature representation, serving as a critical component 

for achieving efficient financial risk perception. 

3.4. Multi-Level Mamba Modeling Module 

To more fully capture the dynamic changes in financial data across different temporal scales, 

this paper designs the multi-level Mamba modeling module, as shown in Figure 4, within FARPM-

Net. The module consists of two parallel Mamba branches, each handling data patterns at fine-grained 

and coarse-grained temporal scales. The goal is to simultaneously capture local fluctuations and 

macro trends in financial data, thereby enhancing the model's ability to perceive and represent multi-

period financial risks. Through the dual-scale state-space modeling mechanism, FARPM-Net 

explicitly models different temporal dependency patterns within a unified representation space, 

providing rich and multi-level semantic feature support for subsequent risk prediction tasks. 

 

Figure 4. Architecture of the multi-level Mamba modeling module in FARPM-Net. The module 
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consists of two parallel Mamba branches: one for modeling short-term fluctuations and the other for 

long-term trends in financial data. 

 

The model input is the multimodal time series (X={x1,x2,...,xT}) obtained after the previous 

stage of cross-modal fusion, where (xt∈Rd)  represents the input vector at the t-th time step. To 

accommodate the state-space modeling structure, the input is first transformed into an intermediate 

representation via a linear mapping, where L denotes the mapped embedding vector, We∈Rh×d is the 

weight matrix, and be∈Rh is the bias term, both of which are learnable parameters as in (10). 

𝑢𝑡 = 𝑊𝑒𝑥𝑡 + 𝑏𝑒 ········································· [Formular 10] 

Subsequently, the model establishes temporal evolution relationships in the latent space, where 

𝑠𝑡 represents the hidden state vector. A and B∈Rh×h are the state transition matrix and input mapping 

matrix, respectively, while 𝜎  denotes the nonlinear gating function used to enhance the model's 

ability to select key state changes. Through this mechanism, the model fuses and updates information 

from each time step with historical states, thereby constructing a dynamic dependency chain. This 

design differs from the chain structure of traditional RNN models, with its core advantage being the 

support for parallel state propagation and global modeling capability, which significantly alleviates 

gradient vanishing and performance degradation, especially when handling long sequences as in 

(11)(12). 

𝑠𝑡 = 𝐴𝑠𝑡−1 + 𝐵𝑢𝑡 ······································· [Formular 11] 

ℎ𝑡 = 𝜎(𝑠𝑡) + 𝑢𝑡 ········································· [Formular 12] 

With respect to implementation details FARPM-Net Creates two independent Mamba branches 

to manage granularity data at different times. The fine grain office is focused on detecting original 

anomalies such as cash flow fluctuations, increased demand, and unexpected expenditure that 

function as sudden risk signals during short cycles. On the other hand, the coarse grained field uses 

an array of glide window aggregations or sample representations to handle an array and focus on mid 

- and long-term trends such as quarterly or annual changes, including macro risk features such as 

changes in asset structure, increased debt ratios, or decreased profitability. 

The two branches ultimately generate feature representations, which are then merged into a 

unified temporal representation vector.𝐻𝑓  and 𝐻𝑐  represent the sequence outputs along the time 

dimension from the fine-grained and coarse-grained Mamba branches, respectively. 𝑊𝑓 and 𝑊𝑐 are 

the linear projection weight matrices, while 𝑏𝑓  and 𝑏𝑐  are the corresponding bias terms. These 

generate the global embedding vectors for the two branches in a unified dimension as in (13)(14). 

𝑧𝑓 = 𝑊𝑓𝐻𝑓 + 𝑏𝑓 ,  𝑧𝑐 = 𝑊𝑐𝐻𝑐 + 𝑏𝑐 ···················· [Formular 13] 

𝑧 = concat(𝑧𝑓, 𝑧𝑐) ······································ [Formular 14] 

The Mamba module, using state-space modeling, efficiently captures the semantics of financial 

data, handling periodicity, lag, and trends in corporate financials. It overcomes the limitations of 

traditional neural networks by incorporating dynamic system mechanisms, allowing for the modeling 

of both current and historical states. This enables FARPM-Net to track long-term corporate state 

evolution and capture risk signals more effectively. The module’s global convolution and attention 
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characteristics further enhance its ability to weigh information across time steps, improving prediction 

accuracy and robustness. 

4. Experiment 

4.1 Datasets 

This experiment utilized two publicly available and widely recognized financial datasets, which 

include both textual and structured time-series data, meeting the multimodal fusion requirements of 

FARPM-Net. The SEC EDGAR 10-K dataset, released by the U.S. Securities and Exchange 

Commission, includes detailed financial statements and management discussion reports that publicly 

traded companies must submit annually[16]. It contains structured data such as balance sheets, 

income statements, and cash flow statements, along with in-depth descriptions of the company’s 

operational performance and risk factors. This combination of textual and numerical data offers 

valuable input for multimodal models, facilitating the exploration of the underlying relationships and 

potential risk signals in corporate finances. It is widely used in financial analysis, risk assessment, 

and automated auditing research. The Yahoo Finance dataset provides historical stock prices, trading 

volumes, and financial summaries for numerous publicly traded companies worldwide[17]. It is 

extensive, covering a long time span, and excels at capturing dynamic financial metric changes, 

especially short-term fluctuations and mid-term trends. Combined with the textual and structured data 

from SEC EDGAR, the Yahoo Finance time series enhances FARPM-Net's capability to analyze and 

predict risks across different time scales. 

.4.2 Experimental Setup and Configuration 

The experiments were conducted on a high-performance computing platform with an NVIDIA 

Tesla A100 GPU (40GB VRAM), Intel Xeon Gold 6338 CPU (32 cores), 256GB memory, and 4TB 

NVMe SSD storage. The powerful GPU accelerated FARPM-Net’s training, particularly for multi-

level temporal modeling and multimodal fusion. The CPU supported data preprocessing and 

parallelism, improving efficiency. The system ran on Ubuntu 22.04 LTS with PyTorch 2.0, CUDA 

11.7, and cuDNN 8.4, while Python 3.9 ensured compatibility. The SEC EDGAR 10-K and Yahoo 

Finance datasets were cleaned and preprocessed, including denoising, tokenization, and 

normalization. Data splitting was done with an 80/20 ratio for SEC EDGAR and 70/30 for Yahoo 

Finance. The Adam optimizer with an initial learning rate of 0.0005 was used for training, with a 

cosine annealing scheduler to enhance stability. Hyperparameters were controlled to ensure model 

generalization and experimental reproducibility. 

4.3 Evaluation Metric 

In financial risk forecasting tasks FARPM-Net In order to evaluate the performance of a model 

in detail, five major indicators widely used in the sector are selected and the model's performance can 

be reflected in several dimensions. These metrics not only assess the model's classification accuracy 

and error control ability but also cover its performance in handling sample imbalance and risk score 

regression accuracy, thereby fully demonstrating the comprehensive effect of multimodal, multi-level 
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risk identification[18][19]. 

Accuracy is the most intuitive classification performance indicator that measures the correctly 

predicted sample ratio between all samples. TP represents the number of true positives, TN represents 

the number of true negatives, FP represents the number of false positives, and FN represents the 

number of false negatives. Thus, high accuracy shows that most normal and divergent risk cases can 

be accurately identified in complex multi-source financial data that reflect the overall effectiveness 

of the model decision-making process as in (15). 

Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 ·························· [Formular 15] 

Precision reflects the accuracy of the model in the prediction of high risk cases. High accuracy 

FARPM-Net  It suggests that there is little to generate false positive values in the risk warnings, 

which contributes to minimizing regular business interruptions and improving the reliability of 

models in practical applications of financial auditas in (16). 

Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 ··································· [Formular 16] 

Recall measures the model's ability to capture true high-risk samples. This metric is particularly 

important for financial risk prediction, as failing to identify risks could lead to significant economic 

losses. FARPM-Net improves the identification rate of latent risks through multimodal fusion and 

long-term/short-term modeling, thereby enhancing recall performance as in (17). 

Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 ······································· [Formular 17] 

F1-score, as the harmonic mean of precision and recall, balances the risks of false positives and 

false negatives and is an important metric for the comprehensive evaluation of the model's risk 

classification performance. When addressing the class imbalance issue, the F1-score of FARPM-Net 

more comprehensively reflects the model's practical application value as in (18). 

𝐹1 = 2 ×
Precision×Recall

Precision+Recall
 ···························· [Formular 18] 

Mean Absolute Error (MAE) is used to evaluate the model's prediction accuracy for continuous 

risk scores. ŷi represents the predicted risk score for the i-th sample, yi is the true score, and N is 

the total number of samples. As a supplementary metric for FARPM-Net's output risk levels, MAE 

reflects the model's precise control over financial risk quantification, revealing its performance in 

fine-grained risk assessment as in (19). 

MAE =
1

N
∑ |N
i=1 yi − ŷi| ································· [Formular 19] 

4.4 Comparative Experimental Results and Analysis 

To comprehensively validate the effectiveness and advanced nature of FARPM-Net in the 

domain of financial risk prediction, this paper designs a systematic comparative experiment. Five 

prominent models from the current multimodal and temporal modeling fields, which have 

demonstrated strong performance, are selected as benchmarks. The experiments are conducted on 

two publicly available and representative financial datasets—SEC EDGAR 10-K and Yahoo 



 Journal of Information and Computing (JIC), 2025, 3(4), 44-63. 

  55  
 

Finance—covering both textual information and structured time series data, fully reflecting the 

diversity and complexity of real-world application data. Through a multi-metric evaluation, the 

experiment accurately assesses the model's overall performance in risk classification, score prediction, 

and handling sample imbalance, thereby thoroughly verifying FARPM-Net's ability to integrate 

multisource heterogeneous data, capture both short-term and long-term dynamics, and enhance risk 

prediction accuracy.Table 1 shows the experimental results: 

Table 1. Performance comparison of FARPM-Net with other models on the SEC EDGAR 10-K and 

Yahoo Finance datasets. 

Model Dataset 
Accuracy 

(%) 

Precision 

(%) 
Recall (%) 

F1-score 

(%) 
MAE 

AuditBERT[20] 
FRED 82.1 79.5 74.3 76.8 0.134 

Eurostat 80.7 77.8 72.9 75.2 0.141 

Fi-GNN[21] 
FRED 84.3 81.2 76.5 78.7 0.126 

Eurostat 83.0 79.7 74.8 77.1 0.132 

TimeMAE[22] 
FRED 85.7 82.5 78.1 80.2 0.118 

Eurostat 84.4 81.0 76.3 78.5 0.125 

Mamba[23] 
FRED 87.4 84.1 80.2 82.1 0.111 

Eurostat 86.1 83.3 78.7 80.9 0.118 

Autoformer[24] 
FRED 86.8 83.7 79.6 81.5 0.113 

Eurostat 85.5 82.7 78.0 80.2 0.120 

FARPM-Net 
FRED 91.5 88.9 85.4 87.1 0.093 

Eurostat 90.2 87.2 83.9 85.5 0.101 

 

 

Figure 5. Comparative Experimental Results of Various Models on SEC EDGAR 10-K and Yahoo 

Finance Datasets. 

 

Figure 5 clearly demonstrates FARPM-Net’s systematic advantages across key evaluation 

metrics. On the SEC EDGAR 10-K dataset, FARPM-Net achieved an accuracy of 91.5%, 
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significantly outperforming advanced models such as Mamba 87.4% and Autoformer 86.8%. In terms 

of F1-score, FARPM-Net reached 87.1%, representing a 6.1\% improvement over Mamba and 

surpassing Fi-GNN 78.7% and TimeMAE 80.2% by 8.4% and 6.9%, respectively. For precision and 

recall, FARPM-Net achieved 88.9% and 85.4%, the highest among all comparison models, exceeding 

Mamba by approximately 5.7% and 6.4%, respectively. In the regression task, the model attained a 

mean absolute error (MAE) of 0.093, outperforming Mamba (0.111) and Autoformer (0.113), with a 

relative error reduction of over 16%.On the Yahoo Finance dataset, FARPM-Net also delivered 

outstanding performance, achieving 90.2% accuracy approximately 4.7% higher than the second-best 

model, Mamba 86.1%. Its F1-score improved from Mamba's 80.9% to 85.5%, a 5.7% gain. Precision 

and recall reached 87.2% and 83.9%, respectively, exceeding baseline models such as Fi-GNN and 

TimeMAE by more than 3%. The MAE decreased from Mamba's 0.118 to 0.101, representing a 

14.4% reduction in error.These improvements not only demonstrate superior performance in 

individual metrics but also highlight FARPM-Net’s well-balanced architecture in both classification 

and regression tasks.The result of the two datasets is the integration of highly dimensional and 

heterogeneous inputs from several sources. FARPM-Net The excellent capability is still confirmed. 

In various indicators, performance increased by 3 to 6%. The reduction is more than 10% and has 

double advantages in terms of accuracy and robustness. In addition, FARPM-Net is an indispensable 

feature of real high-risk financial applications and data complexity that show the smallest variations 

in performance over multiple experiments, showing strength in the face of input confusion and sample 

variability. 

 

 

Figure 6. Accuracy comparison of FARPM-Net and baseline models over time, highlighting 

FARPM-Net’s superior performance due to effective multi-level temporal modeling and 

intermodal fusion strategies. 
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As shown in Figure 6, FARPM-Net consistently outperforms the other baseline models across 

key metrics such as classification accuracy, recall, and F1-score, while also exhibiting significantly 

lower regression error in risk scoring. This figure intuitively reflects the time modeling at multiple 

levels and the effectiveness of the intermodal fusion strategy in real applications. We confirm 

FARPM-Net that we have a stable and effective ability to identify and predict risks in complex 

financial environments. These results not only confirm the rigidity of the model design, but also 

demonstrate its applicability and value for automated corporate assessment and broader applications 

in financial risk management. 

4.5 Ablation experimental results and analysis 

To study the FARPM-Net specific contribution to the overall performance of individual core 

modules, this work is ablation It is designed for research. Mamba Module, TCN Module that phases 

out the accuracy of module-module merger for financial risk forecasting tasks, F1-score, MAE 

assessment of the effects of individual elements on important indicators. The experiment was 

conducted with both data sheets and the results are summarized in Table 2. 

Table 2. Single-module ablation study of key FARPM-Net components, used to evaluate the 

individual contribution of each module to financial risk prediction performance 

Model 

Configuration 
Dataset 

Accuracy 

(%) 

Precision 

(%) 
Recall (%) 

F1-score 

(%) 
MAE 

FARPM-Net 
FRED 91.5 88.9 85.4 87.1 0.093 

Eurostat 90.2 87.2 83.9 85.5 0.101 

w/o Multi-level 

Mamba 

FRED 87.2 84.3 81.0 83.4 0.105 

Eurostat 86.0 82.7 79.5 81.0 0.114 

w/o Replaced by 

Conv Layer 

FRED 88.8 85.2 82.1 84.7 0.102 

Eurostat 87.4 83.8 80.4 82.0 0.109 

w/o Cross-modal 

Fusion 

FRED 87.9 84.1 80.7 83.3 0.104 

Eurostat 86.5 82.9 79.1 80.8 0.112 

 

The ablation experiments conducted on the SEC EDGAR 10-K and Yahoo Finance datasets 

systematically validate the significant impact of the key components in FARPM-Net on the overall 

model performance. When the multi-level Mamba module was removed, the model’s accuracy and 

F1-score on the SEC EDGAR dataset dropped by approximately 4.7\% and 3.7\%, respectively, and 

by 4.2\% and 4.5\% on the Yahoo Finance dataset. Meanwhile, the mean absolute error (MAE) 

increased by more than 11\%, clearly demonstrating the Mamba module’s core role in capturing long-

term temporal dependencies and multi-scale dynamics in enterprise financial data. It serves as a 

cornerstone for accurate modeling of complex financial risks.On the other hand, when the TCN 

module was replaced with a traditional convolutional layer, the model experienced a performance 

decline on both datasets.Specifically, In the SEC EDGAR dataset, accuracy and F1-score of the result 
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decreased by 2.7\% and 2.4\%, respectively, The TCN module is important for capturing short-term 

local changes in financial data and shows that the model’s sensitivity to sensitive risk signals is 

significantly increased. In addition, the removal of the transmodular fusion module limits the 

possibility of integrating several source information from the model. SEC EDGAR and Yahoo 

Finance Accuracy and F1-score in both datasets by approximately 3.8\% and MAE has increased by 

more than 10\%. These results highlight the important role that attention-based fusion mechanisms 

play in enabling effective interaction and cooperative representation between modalities.As shown in 

Figure~\ref{figure7} FARPM-Net basic elements play an important role in model performance.  

 

 

Figure 7. Performance Comparison of Model Configurations in Single-Module Ablation 

Experiments on SEC EDGAR 10-K and Yahoo Finance Dataset. 

 

However, experience confirms the individual contribution of the individual main components, 

the interactions and interdependencies between the modules have not been fully discovered. To cope 

with this, the article further designs a multi module joint ablation experiment. By simultaneously 

removing different combinations of modules and cross-fusion modules, this study analyzes in detail 

the impact of the module combination on the overall model performance. Table 3 summarizes the 
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detailed results of the joint ablation experiments. 

Table 4. Joint ablation study of key FARPM-Net modules, used to evaluate the synergistic effects 

of module combinations and their impact on financial risk prediction performance. 

Model 

Configuration 
Dataset 

Accuracy 

(%) 

Precision 

(%) 
Recall (%) 

F1-score 

(%) 
MAE 

w/o Mamba & 

TCN 

FRED 85.6 82.3 79.2 80.7 0.110 

Eurostat 84.7 81.0 78.0 79.4 0.117 

w/o Mamba & 

Fusion 

FRED 85.0 81.7 78.8 80.1 0.112 

Eurostat 84.1 80.5 77.3 78.7 0.120 

w/o TCN & 

Fusion 

FRED 86.2 83.1 79.7 81.3 0.108 

Eurostat 85.3 81.5 78.1 79.7 0.115 

w/o Mamba, TCN 

& Fusion 

FRED 83.4 79.5 77.1 78.3 0.119 

Eurostat 82.9 78.0 75.4 76.6 0.126 

Model 

Configuration 
Dataset 

Accuracy 

(%) 

Precision 

(%) 
Recall (%) 

F1-score 

(%) 
MAE 

w/o Mamba & 

TCN 

FRED 85.6 82.3 79.2 80.7 0.110 

Eurostat 82.9 78.0 75.4 76.6 0.126 

 



 Journal of Information and Computing (JIC), 2025, 3(4), 44-63. 

  60  
 

 

Figure 8. Performance Comparison of Model Configurations in Multi-Module Ablation 

Experiments on SEC EDGAR 10-K and Yahoo Finance Datasets. 

 

As shown in Figure 8 further reveal the synergistic effects of key modules within FARPM-Net 

and their overall impact on model performance. Compared to the complete model, removing both the 

multi-level Mamba module and the TCN module resulted in a performance decline on the SEC 

EDGAR dataset, with accuracy and F1-score dropping by approximately 6.5% and 7.3%, respectively. 

A similar performance drop was observed on the Yahoo Finance dataset, with accuracy and F1-score 

decreasing by 6.1% and 7.1%, respectively. This indicates that the absence of both long-term and 

short-term temporal modeling severely impairs the model’s ability to capture dynamic financial 

features.When the multi-level Mamba module and the cross-modal fusion module were 

simultaneously removed, model performance further deteriorated, with accuracy on the SEC EDGAR 

and Yahoo Finance datasets decreasing by approximately 7.1% and 6.7%, respectively, and F1-scores 

dropping by over 7%.Additionally, removing both the TCN module and the cross-modal fusion 

module also led to a notable performance decline, highlighting the importance of both short-term 

dynamic modeling and multimodal information integration.The most significant degradation 

occurred when all three core modules the multi-level Mamba module, the TCN module, and the cross-
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modal fusion module were removed. In this scenario, accuracy and F1-score on the SEC EDGAR 

dataset dropped by over 8.8%, and by more than 8.3% on the Yahoo Finance dataset. The MAE also 

increased significantly, indicating that the absence of all three modules critically undermines the 

model’s ability to perform comprehensive risk identification.Ablation results in a single Transfusnet 

It is clarified that the modules are nested to each other and that the removal of one module 

significantly affects the prediction ability and stability of the model. Each module is important for 

overall performance. These results are useful in dealing with complex economic data Transfusnet 

Proving its superiority and proved its strong predictive ability and stability. 

In summary, the joint ablation experiments clearly demonstrate the close collaborative 

relationship among the multi-level temporal modeling, multi-scale dynamic capture, and cross-modal 

fusion modules within FARPM-Net. The synergy among these components significantly enhances 

the model’s capability to perceive and predict complex financial risks. The removal of any key 

combination leads to a substantial degradation in overall performance, underscoring both the 

irreplaceability of each component and the effectiveness of their coordinated optimization in the 

model’s architectural design. 

5. Conclusion and Discussion 

This paper proposes the FARPM-Net model for enterprise financial risk prediction and 

automated auditing, addressing key challenges in the field by integrating multimodal fusion and 

multi-level temporal modeling. The model combines a multi-level Mamba module, TCN, and an 

attention-based cross-modal fusion module to achieve deep fusion of structured financial data, 

unstructured textual information, and external market factors. Experimental results on two 

authoritative datasets demonstrate FARPM-Net’s superior performance in accuracy, recall, F1 score, 

and risk score regression, highlighting its strong capabilities in risk identification and quantification. 

Ablation studies confirm the vital contributions of each module: the Mamba module captures 

long-term financial dependencies, the TCN enhances short-term dynamics sensitivity, and the cross-

modal fusion module optimizes multi-source data representation. The synergy between these 

components significantly boosts the model's generalization and stability, ensuring reliable financial 

risk predictions. Future work will focus on further optimizing model architecture, exploring better 

intermodal integration strategies, and improving computational efficiency through lightweight 

construction. Additionally, the model could be extended to applications like fraud detection and credit 

rating, with the ultimate goal of improving transparency and reliability in financial decision-making. 
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