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ABSTRACT 

The integration of human-robot interaction within sports rehabilitation marks a significant 

advancement in improving the precision and effectiveness of therapeutic exercises. However, existing 

models often fail to accurately capture and analyze the intricate, dynamic movements required in 

rehabilitation, resulting in inadequate feedback and less optimal patient outcomes. To address these 

challenges, we propose the HR-YOLOv8-DE network, which integrates Diverse Branch Block 

(DBB), HRNet, and Efficient Multi-Scale Attention (EMA). This model is designed to enhance multi-

scale feature extraction, maintain high-resolution pose estimation, and adaptively prioritize relevant 

features across varying conditions. Experimental results demonstrate the superior performance of our 

approach, with the HR-YOLOv8-DE model achieving a PCK of 82.0% on the MPII dataset and a 

mAP of 74.7% on the COCO dataset, significantly outperforming existing methods. These 

advancements not only improve the accuracy and adaptability of human motion analysis in 

rehabilitation but also set a new standard for future developments in robotic-assisted therapeutic 

interventions. 

 

Keywords: Human-robot interaction, Sports rehabilitation, Pose estimation, HRNet, Multi-scale 

feature extraction, Efficient multi-scale attention. 

 

1. Introduction 

Sports and exercise have long been recognized as integral components of a healthy lifestyle, and 

their incorporation into rehabilitation programs can provide holistic benefits to patients. As an 

essential rehabilitative approach, sports rehabilitation aims to help patients restore impaired motor 

functions, enhancing their quality of life and autonomy [1]. This mode of rehabilitation is not only 

applicable to individuals recovering from sports injuries but also extends to patients affected by 

neurological disorders, chronic pain, and other health issues [2]. While sports rehabilitation plays a 

vital role in fostering recovery and improving quality of life, it still faces numerous challenges in 

practice. In modern society, there is a growing recognition of the importance of sports rehabilitation, 

particularly with the increasing aging population and lifestyle changes. However, traditional 

rehabilitation methods often encounter limitations such as a lack of personalization, difficulties in 
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measuring outcomes, and challenges in maintaining long-term commitment [3]. Moreover, 

conventional rehabilitation programs typically require patients to visit medical facilities for training, 

posing inconvenience and discomfort for those with mobility issues. Therefore, enhancing the 

personalization, effectiveness, and sustainability of sports rehabilitation has become an urgent issue 

in the field. Amidst these challenges, technological advancements have introduced new opportunities 

for sports rehabilitation. Multimodal robots, as emerging rehabilitative aids, have garnered 

widespread attention [4]. These robots integrate various sensory modalities, such as vision, sound, 

and touch, and are equipped with a degree of intelligence and adaptability. By interacting with 

patients, multimodal robots can monitor their movement in real-time, provide personalized training 

and guidance, and offer an improved rehabilitation experience [5]. In this context, research into 

leveraging multimodal robots for more intelligent and effective human-machine interaction in sports 

rehabilitation has begun to flourish. This research encompasses not just the hardware design and 

technical realization of robots but also the application of artificial intelligence in human-machine 

interactions. AI technologies, particularly machine learning and deep learning, have made significant 

strides, offering robust support for the human-machine interaction capabilities of multimodal robots 

in sports rehabilitation [6, 7]. With the guidance of AI, multimodal robots are poised to become vital 

assistants in future sports rehabilitation, providing more personalized and effective services to 

patients, and promoting enhanced and accelerated recovery outcomes. 

Extensive investigations into human-robot interaction (HRI) with multimodal robotic systems 

have been conducted in the field of sports rehabilitation, aiming to address the limitations of 

traditional rehabilitation methods via advanced technological approaches and deliver more intelligent 

and personalized rehabilitation services. One study is an HRI-enhanced multimodal robotic system 

of sports rehabilitation based on the integration of an attention mechanism to dynamically weight 

information of the various sensory modalities used to identify and analyze movement behaviors of 

patients although its design and implementation needs further optimization to make it applicable and 

stable in complex environmental settings. The other study suggested a multimodal robotic platform 

which uses a better transformer model at natural language understanding and generation, with visual 

and auditory perception, to ease HRI in sport rehabilitation scenarios. Although this system has 

proved much progress in language understanding, it remains weak in action identification and act 

direction in the real-life interaction situation [9]. Also, one of the developments is the use of 

reinforcement learning algorithms to create individual rehabilitation guidelines. The model in 

question uses a deep Q-network (DQN) to discover the best rehabilitation measures that can be 

applied to the requirements of each patient and their progress [10]. The system has brought significant 

improvements in rehabilitation outcomes through the simulation of different rehabilitation scenarios 

as well as optimization of action strategies through reinforcement learning. Nevertheless, the model's 

sample complexity and sensitivity to reward function design present challenges for real-world 

deployment, necessitating further exploration and refinement. While their system has made notable 

progress in personalized rehabilitation guidance, improvements are still needed in the model's 

interpretability and explainability. These studies provide various approaches and methods for human-

robot interaction with multimodal robots in sports rehabilitation. However, each method has certain 

limitations, such as issues with real-time performance, stability, language understanding, action 
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recognition, and multimodal information fusion. 

In an attempt to eliminate constraints of previous research, we trained the HR-YOLOv8-DE 

network of sports rehabilitation integrated with human-robot interaction. This network consists of 3 

important additions. First, we have substituted the Bottleneck block at YOLOv8 with the Diverse 

Branch Block (DBB) which improves the feature extraction of the network. Second, we incorporated 

the High-Resolution Network (HRNet) to enhance the accuracy of the pose estimation and fine details. 

Lastly, we have incorporated the Efficient Multi-Scale Attention (EMA) mechanism to enhance the 

perception of multi-scale features to allow our model to give more precise motion tracking and 

customized advice to rehabilitation robots. This assists the patients to do more productive 

rehabilitation exercises. In addition, the integrated technologies make the model very robust and 

generalize well, thus being applicable to a wide range of rehabilitation scenarios and patient 

population. To sum up, the HR-YOLOv8-DE network is a novel method of HRI-integrated sports 

rehabilitation study, which has both theoretical and practical importance. 

Here are the three main contributions of the paper: 

● This paper introduces a novel HR-YOLOv8-DE network that integrates Diverse Branch Block 

(DBB), HRNet (High-Resolution Network), and Efficient Multi-Scale Attention (EMA) 

mechanisms. Compared to existing models, the HR-YOLOv8-DE network demonstrates 

significant improvements in feature extraction, multi-scale feature perception, and high-

resolution pose estimation, thereby enhancing human-robot interaction in sports rehabilitation. 

● By incorporating HRNet, the proposed model achieves higher accuracy in pose estimation, 

capturing and analyzing detailed patient movements more effectively. This enhancement allows 

the robotic system to provide more precise and personalized rehabilitation guidance, significantly 

improving patient recovery outcomes. 

● The integration of the EMA mechanism enables the HR-YOLOv8-DE network to adaptively 

prioritize relevant features under varying conditions, enhancing its ability to perceive multi-scale 

features. This advancement improves the model's robustness and generalization capabilities in 

complex environments, making it more effective across diverse rehabilitation settings and patient 

populations. 

These contributions not only advance the field of robotic-assisted sports rehabilitation but also 

establish new benchmarks for future developments in rehabilitation technology. 

2. Literature Review 

2.1 Advancements in Multimodal Data Fusion and Motion Analysis for Rehabilitation Robotic 

Recent advancements in the field of rehabilitation robotics have increasingly focused on the 

integration of multimodal data fusion techniques and real-time motion analysis technologies to 

enhance patient outcomes. Multimodal data fusion techniques aim to improve human-computer 

interaction by integrating data from various perceptual modalities, such as vision, speech, and touch, 

to provide a comprehensive understanding of patients' movement states. These methods involve 

designing and optimizing models that fuse different data modalities to enhance the monitoring and 

analysis of patient behaviors, thereby improving the accuracy and responsiveness of rehabilitation 

systems [11, 12]. Despite progress, challenges such as suboptimal data fusion results and low 
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accuracy in recognizing complex movements remain, necessitating further research to improve model 

architectures and fusion strategies. 

Real-time motion data collection and processing technologies are essential in rehabilitation that 

records and measures patient motions. Such technologies include the implementation and integration 

of different sensors, development of data acquisition systems to guarantee proper data transmission 

and storage [13, 14]. Real-time data processing consists of such steps as data preprocessing, feature 

extraction, action recognition, and motion trajectory analysis (which is a strong background support 

of real-time monitoring and feedback) [15, 16]. The current problems are optimization of the 

collection of various data streams with synchronization and improved stability and accuracy of the 

system when operating in a complex environment. The next step of the research is to utilize the latest 

data mining and machine learning to enhance the real-time motion data technologies and become 

more intelligent and custom-made rehabilitation robot systems. 

2.2 Application of Detection, Tracking, and Reinforcement Learning Techniques in 

Rehabilitation Robotics 

The combination of detection and tracking systems and reinforcement learning algorithms is a 

new area of research in the intelligent rehabilitation robotics field. The target detection and tracking 

technologies are developed to provide the ability to perform real-time monitoring and guidance by 

identifying and tracking the movement targets of patients (body parts or rehabilitation equipment) in 

dynamic environments [17, 18]. These technologies provide essential data regarding the movement 

patterns of patients, which can be further used to identify the appropriate action and track the current 

trajectory. Nonetheless, issues exist in simultaneous sensing and tracking of a number of moving 

targets under different lighting conditions and body postures that undermines the stability and strength 

of the system [19]. Further studies are needed to come up with better detection and tracking 

algorithms, combining deep learning and conventional computer vision methods to improve the 

accuracy and real-time analysis of rehabilitation systems. 

Reinforcement learning algorithms have a great potential too in streamlining the decision level 

and the control strategies of rehabilitation robots. These algorithms enable the robots to learn through 

their interactions with the environment, which optimizes actions to maximize the cumulative rewards 

– a feature that is especially useful in the development of personalized rehabilitation plans, motion 

paths and the development of motion control strategies [20, 21]. By teaching through reinforcement, 

the robot will also be able to adjust to the expectations of individual patients and keep improving their 

approaches through ease of learning [22, 23]. However, the intricacy and diversification of the robot-

patient interaction situations make it difficult to create efficient reward functions and state 

representations, and the problems of high sample complexity and data sparsity also worsen the 

performance [24]. The optimization of reinforcement learning algorithms to be used in rehabilitation-

oriented applications should be a subject of research in the future because it will result in smarter and 

more personalized robots. 

3. Methods 

3.1 Overview of Our Network 

The HR-YOLOv8-DE network integrates key components to enhance its functionality for 
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human-robot interaction in sports rehabilitation. Figure 1 illustrates the overall architecture of the 

model, which combines advanced components to ensure precise motion detection and pose estimation. 

The model replaces the standard Bottleneck module with the Diverse Branch Block (DBB) to improve 

multi-scale feature extraction for more accurate detection of diverse movements. HRNet is 

incorporated to maintain high-resolution features, enabling precise pose estimation of complex 

human motions. Additionally, the Efficient Multi-Scale Attention (EMA) mechanism dynamically 

focuses on relevant features across scales, enhancing detection and adaptability to varying conditions. 

As shown in Figure 2, the construction of the network begins with systematically replacing the 

YOLOv8 backbone with DBB to create a more robust feature extraction base. HRNet is then 

integrated to focus on pose estimation, ensuring detailed human movement analysis, while EMA is 

added to manage and prioritize features dynamically across scales. Each of these components is 

carefully configured to work synergistically, resulting in a model that is capable of delivering accurate, 

real-time motion monitoring and adaptive feedback in complex rehabilitation environments. 

 

 

 

Figure 1. Overall Network Architecture of HR-YOLOv8-DE 
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Figure 2. Architecture of the enhanced YOLOv8 network integrated with DBB and EMA. 

 

By combining these advanced technologies, the HR-YOLOv8-DE network provides a novel 

approach that aligns with the goals of enhancing human-robot interaction in sports rehabilitation. The 

model’s improved accuracy and adaptability make it a valuable tool for developing more effective 

rehabilitation programs, demonstrating significant theoretical importance and practical application 

value in advancing rehabilitation robotics. 

3.2 Diverse Branch Block 

The Diverse Branch Block (DBBlock) is a neural network module designed to enhance feature 

extraction capabilities, conceived from a comprehensive consideration of feature hierarchies and 

receptive field sizes [25]. In traditional neural networks, feature extraction is typically achieved 

through a series of convolutional and pooling layers, whose configurations are usually fixed, 

extracting features from set scales. However, objects in real-world data often vary in scale and 

complexity, and a single feature extraction layer may not effectively capture targets across all scales 

and complexities. The DBBlock introduces multiple parallel branches, each with a different receptive 

field size and feature extraction capacity [26]. This design allows the DBBlock to extract features 

across multiple scales and levels, which are then fused in subsequent layers, thereby improving the 

model’s detection ability for multi-scale and complex targets. 

The integration of the Diverse Branch Block (DBBlock) into our model plays a pivotal role. 

First, the DBBlock embeds multiple branches within the network, where each branch extracts features 

across different scales. This design effectively mitigates the limitations of traditional models in 

handling multi-scale targets, enabling our model to capture target information more comprehensively 

under the diverse scenarios of sports rehabilitation and thereby enhancing its detection accuracy and 

robustness. Second, the DBBlock strengthens the model’s feature extraction capability, which 
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facilitates the processing of multimodal data. In the research on multimodal human-robot interaction 

(HRI) for sports rehabilitation, a model capable of fully capturing multimodal information is essential 

to achieve accurate motion monitoring and personalized rehabilitation guidance. The incorporation 

of the DBBlock endows our model with this capability, allowing it to better adapt to the varied 

characteristics of multimodal data and further advancing HRI research in this field. The architecture 

of the DBBlock is illustrated in Figure 3. 

 

 

Figure 3. The design of DBB architecture 

 

Following is the primary mathematical derivation process elucidating DBB: The feature map of 

the i-th branch is computed as follows: 

 [Formular 1] 

where:  is the feature map of the i-th branch,  and  are the weights and biases of the 

i-th branch, respectively,  is the input feature map. The aggregated feature map is obtained by 

summing the feature maps of all branches: 

 [Formular 2] 

where:  is the aggregated feature map.  is the total number of branches. The rectified feature 

map is computed using the rectified linear unit activation function: 

 [Formular 3] 

where:  is the rectified feature map. The gated feature map is obtained by convolving the 

rectified feature map with the gating kernel: 

 [Formular 4] 

where:  is the gated feature map.  is the gating kernel. The final output feature map is 

obtained by element-wise multiplication of the rectified feature map and the sigmoid of the gated 

feature map: 
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 [Formular 5] 

where:  is the final output feature map.  is the sigmoid activation function.  denotes 

element-wise multiplication. 

3.3 Efficient Multi-Scale Attention 

The Exponential Moving Average (EMA) Attention is an attention mechanism designed to 

enhance the model's understanding of the interrelations between different sensory modalities. It 

employs an exponential moving average approach to dynamically compute and update attention 

weights, thereby capturing the correlations between various sensory modalities more effectively [27]. 

Specifically, by considering the attention weights from historical moments, the EMA Attention 

allows the model to allocate more focus to the current input data, thus enhancing the model’s 

capability to analyze data correlations [28]. This dynamic attention mechanism aids the model in 

understanding the relationships between multimodal data more flexibly and accurately, thereby 

improving the model's performance and generalization abilities. 

EMA Attention is a component of our model which has significant advantages. On the one hand, 

it increases the ability of the model to determine correlations between data of different modalities, 

which makes it more robust in integrating these data. Multimodal data (visual, auditory and tactile), 

which are characteristic of sport rehabilitation, may show natural interrelations. The EMA Attention 

is introduced so that the model can utilize these correlated data in a better way and its performance is 

further boosted and the results are better. Second, EMA Attention enables the dynamically computed 

and updated weights of attention to improve the ability of the model to adapt to changes across time 

and data types, thus improving its robustness and generalization. This dynamic concentration process 

allows the model to modify the allocation of attention according to the real-time changes in data, and 

better adaptation to different situations and demands is achieved. Figure 4 describes the network 

structure of EMA. 
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Figure 4. Overall Network Architecture Diagram of EMA 

Hereafter, we outline the principal mathematical derivation process for EMA: The exponential 

moving average (EMA) calculation updates the moving average with a decay factor: 

 [Formular 6] 

where:  is the EMA at time ,  is the input value at time ,  is the decay factor, typically 

between 0 and 1. 

The exponential moving average (EMA) is normalized to obtain the attention weights: 

 [Formular 7] 

where:  is the attention weight at time .  is the total number of time steps. The context 

vector is calculated as the weighted sum of input values using the attention weights: 

 [Formular 8] 

where:  is the context vector. The output is computed by combining the context vector and 
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the input values: 

 [Formular 9] 

where:  is the output.  and  are the weight matrices for the context vector and input 

values, respectively. The EMA attention mechanism can be updated iteratively using the 

backpropagation algorithm: 

 [Formular 10] 

where:  is the loss function. 

3.4 High-Resolution Network 

The High-Resolution Network (HRNet) is designed to improve the accuracy of pose estimation 

tasks by maintaining high-resolution representations throughout the network’s layers. Unlike 

traditional architectures that down-sample input images to low resolutions and then up-sample them 

back, HRNet continuously processes features at multiple resolutions in parallel. This approach 

enables the network to capture fine-grained details and spatial information more effectively, which is 

crucial for accurate pose estimation in scenarios involving complex human motions. The HRNet 

architecture consists of several stages where high-resolution sub-networks operate alongside low-

resolution sub-networks, with continuous information exchange between them. Figure 5 illustrates 

the architecture of HRNet. 

 

 

Figure 5. Architecture of HRNet. 

 

HRNet uses several key mathematical operations to maintain high-resolution representations 

and improve pose estimation accuracy, as outlined in the following equations: 

Formula for Feature Map Calculation at Layer l: To calculate the feature map at a given layer, 

HRNet utilizes convolutional operations across multiple branches: 
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 [Formular 11] 

Where  represents the feature map of the -th branch at layer ,  denotes the weights for the 

convolutional layer,  is the feature map from the previous layer, and  is the bias term. 

Formula for Multi-Resolution Fusion: HRNet performs multi-resolution fusion to merge feature 

maps from different branches at each layer. 

 [Formular 12] 

where  is the feature map for branch  at layer ,  represents the 

transformation function that fuses feature maps from branch  to branch , and  is the total number 

of branches. Formula for Feature Map Fusion: To integrate feature maps across all branches, HRNet 

applies a fusion operation: 

 [Formular 13] 

where  denotes the fused feature map at layer , and  represents the fusion operation 

that aggregates the features from all branches. Loss Function for Keypoint Estimation: The loss 

function for keypoint estimation is designed to minimize the error between predicted and true 

keypoint positions: 

 [Formular 14] 

where  is the loss function for HRNet,  is the ground truth position of keypoint ,  is 

the predicted position of keypoint , and  is the total number of keypoints. Prediction of Keypoint 

Position: HRNet predicts the keypoint positions based on the fused feature map: 

 [Formular 15] 

where  is the predicted keypoint position,  denotes the activation function (such as Softmax), 

 represents the output layer weights,  is the fused feature map from the final layer, and 

 is the bias term associated with the output layer. 

HRNet has been incorporated in our model improving significantly its performance. At each 

step, keeping the details on a high level, HRNet increases the accuracy of the pose estimation, an 

essential feature of tracking small movements and postural alterations in sports rehabilitation. The 

model has a powerful architecture that allows it to generalize the wide range of rehabilitation activities, 

including simple and complex motions based on the learning of rich spatial representations. The 

development aids in the more correct and credible human pose estimation, which in turn helps to 

introduce more adaptive and personalized rehabilitation guidelines. 

4. Experiment 

4.1 Dataset 

This article uses two data sets, namely the COCO (Common Objects in Context) Dataset [29] 

and MPII Human Pose Dataset [30]. They are important multi-modal data resources widely used in 

tasks such as target detection, segmentation, key point detection, and three-dimensional 
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reconstruction. The rich content and precise annotations of these two data sets provide a reliable 

foundation and verification for our research, and provide strong support for our model design and 

experimental results. 

The COCO (Common Objects in Context) dataset is a large multi-modal dataset widely used for 

tasks such as object detection, segmentation, and key point detection. Created by Microsoft Research, 

the dataset contains images in a variety of scenes, covering a rich variety of object categories and 

complex environmental backgrounds. Specifically, the COCO dataset contains approximately 

100,000 images, each image contains annotation information for multiple objects, and there are 

annotations for more than 300,000 object instances. These object instances include common object 

categories such as animals, human bodies, vehicles, and furniture. The annotation information of the 

COCO dataset includes object bounding boxes, segmentation masks, key point locations, etc., 

providing rich training and evaluation data for various computer vision tasks. In addition, the COCO 

dataset also provides rich scene and background information, which helps the model's generalization 

ability and robustness in complex environments. In general, the COCO dataset is a standard dataset 

widely used in tasks such as target detection, segmentation, key point detection, etc. It has rich multi-

modal data and precise annotation information, and is suitable for the training of various deep learning 

models. and assessment. 

The MPII Human Pose Dataset is specifically designed for human pose estimation tasks and is 

sourced from the internationally recognized video platform, YouTube. The dataset has been carefully 

curated to cover a wide range of everyday life and sports scenarios. It contains approximately 25,000 

images and over 40,000 human samples, with each sample annotated with 16 key points (such as 

wrists, elbows, shoulders, and knees) that are crucial for accurately analyzing and understanding 

human movements. The images in the dataset are of high quality, with clear resolution and diverse 

scenes, encompassing a variety of situations from static postures to complex dynamic activities, such 

as running, jumping, and yoga. The dataset also includes variations in background, lighting conditions, 

and interactions between multiple individuals, which adds complexity to pose estimation and enriches 

the dataset. The sample collection process emphasizes diversity and balance, ensuring a broad 

representation of different ages, genders, body types, and clothing. These characteristics make the 

MPII dataset particularly suitable for training and evaluating pose estimation models that need to 

handle complex environments and variable movements, providing strong data support for research in 

human-robot interaction in sports rehabilitation. 

4.2 Experimental environment 

In the experiments of this article, we used a high-performance computer equipped with NVIDIA 

GeForce RTX 3090 GPU, Intel Core i9-11900K CPU and 64GB memory as the experimental 

environment. The operating system is Ubuntu 20.04 LTS, and the main programming language is 

Python 3.8. We use the PyTorch deep learning framework to build the model and leverage CUDA to 

accelerate GPU computing. The experimental environment includes some commonly used Python 

libraries, such as NumPy, Pandas and Matplotlib, for data processing, visualization and experimental 

result analysis. In addition, deep learning-related libraries are used, including torchvision, 

tensorboard, and scikit-learn, to build, train, and evaluate models. We make full use of high-

performance computers and advanced deep learning frameworks to provide a solid foundation for 
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human-computer interaction research on multi-modal robots in sports rehabilitation. Such an 

experimental environment provides reliable reference for research and promotes the application and 

development of human-computer interaction technology in the field of rehabilitation. 

4.3 Implementation Details 

4.3.1. Data processing 

To prepare the COCO and MPII Human Pose datasets for training the improved YOLOv8 model, 

several preprocessing steps were undertaken to ensure consistency and enhance model performance. 

Data Normalization 

The size of all images was standardized by reducing the size of all images to a resolution of 256x192 

pixels. The Pixel values were normalised in the range [0, 255] to [0, 1] and each channel of the RGB 

was normalised with the mean ([0.485, 0.456, 0.406]) and the standard deviation ([0.229, 0.224, 

0.225]) of the COCO dataset. Moreover, keypoint coordinates of the two datasets were normalised 

based on the dimensions of images, and all the coordinates were transformed into the [0, 1] scale. 

Normalization guarantees reliable data allocation and uniform distribution of keypoints across data 

sets. 

Cropping and Resizing 

To maintain the integrity of human poses, the images with different aspect ratios were center cropped 

before being resized to the desired 256x192 resolution. This will avoid distortion of the body 

proportions as much as the important components of the body will be visible and pose information 

will be saved to be analyzed correctly. 

Data Augmentation 

Data augmentation techniques (random rotation (±30deg), horizontal flip (50% probability), scaling 

(0.75-1.25x size of original image), and translations (up to 10% of image size)) were used to improve 

the overall generalization property of the model. These additions bring about a difference in pose, 

scale and orientation, and the model learns in a robust manner across varied conditions. 

Keypoint Descriptions 

COCO dataset has annotations of 17 keypoints (nose, eyes, ears, shoulders, elbows, wrists, hips, knees 

and ankles) that are important body joints and areas of the body that are necessary to analyze human 

movements in the rehabilitation of sports. The MPII Human Pose dataset offers the annotation of 16 

keypoints, which are concentrated on the large joints of a human body, and can be applied to 

understand various human postures and actions. These annotations are essential in training the model 

to predict and track human poses (2D) correctly. 

4.3.2. Network parameter setting 

To optimize the performance of the HR-YOLOv8-DE network for sports rehabilitation tasks, 

we configured several key parameters. The model utilizes Diverse Branch Blocks (DBB) with 

convolutional layers of 1x1, 3x3, and 5x5 kernels to capture multi-scale features effectively. HRNet 

is integrated to maintain high-resolution feature representations, essential for precise pose estimation. 

The Efficient Multi-Scale Attention (EMA) mechanism is employed with 8 attention heads and an 

exponential moving average factor of 0.99, enhancing the model's focus on relevant features. For 

training, we applied stochastic gradient descent (SGD) with a momentum of 0.9 to facilitate faster 
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convergence and set the weight decay to 0.0001 to prevent overfitting. The model was trained to 

minimize a keypoint regression loss, aiming to reduce the error between predicted and actual 

keypoints, thereby ensuring robust performance in human motion analysis for rehabilitation. 

4.4 Evaluation Metrics 

In the object detection task, evaluating model performance requires the use of multiple robust 

metrics to measure the accuracy and generalization ability of the model. In this study, we used mAP 

(mean average precision)-like metrics on the COCO dataset to evaluate object detection performance, 

and PCK (Percentage of Correct Keypoints) metrics on the MPII Human Pose dataset to evaluate the 

accuracy of pose estimation. Average Precision (AP): AP represents the precision of the model 

averaged over different recall levels at a specific IoU threshold. Two commonly used thresholds are 

AP50 and AP75, where the IoU is set to 0.5 and 0.75, respectively. 

 [Formular 16] 

where TP  is the number of true positives at a given IoU threshold for the -th class, FP  is 

the number of false positives, and  is the total number of classes. AP50 and AP75 correspond to 

IoU thresholds of 0.5 and 0.75, respectively, representing different levels of overlap between 

predicted and ground truth bounding boxes. Mean Average Precision (mAP): mAP is the mean of AP 

values computed at multiple IoU thresholds, providing a comprehensive measure of the model’s 

performance across varying levels of overlap requirements. It is calculated as: 

 [Formular 17] 

where  is the total number of IoU thresholds, and AP  is the average precision at each 

threshold IoU . Average Precision for Medium Objects (APM): APM evaluates the average precision 

specifically for medium-sized objects, assessing the model’s effectiveness in detecting objects of 

intermediate size. 

 [Formular 18] 

where AP  is the average precision for medium-sized objects in the -th class, and  is the 

total number of classes. 

Average Precision for Large Objects (APL): APL measures the average precision for large-sized 

objects, reflecting the model’s ability to detect larger objects accurately. 

 [Formular 19] 

where AP  is the average precision for large-sized objects in the -th class, and  is the total 

number of classes. 

PCK (Percentage of Correct Keypoints): PCK is a metric used to evaluate the accuracy of 

keypoint detection in pose estimation tasks. It represents the proportion of correctly detected 

keypoints within a certain error threshold. Specifically, a predicted keypoint is considered correct if 

its distance from the corresponding ground truth keypoint is within a given threshold. Typically, this 

threshold is set as a fraction of the head size of the target person (e.g., PCK@0.5 means the threshold 

is 50% of the head size). The formula for calculating PCK is as follows: 
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 [Formular 20] 

where:  is the total number of keypoints.  represents the Euclidean distance between the 

predicted keypoint  and the corresponding ground truth keypoint. s¡ is the normalization factor (such 

as the head size).  is the threshold ratio.  is an indicator function that equals l if the condition is 

met, and 0 otherwise. 

5 Results 

5.1 Performance Comparison Across Datasets 

 

Table 1. Comparison of PCK performance on the MPII dataset between our model and other state-

of-the-art methods. 

Method 
Hea Sho Elb Wri Hip Kne Ank 

Medi

an 

PCK 

Iqbal et al. [31] 56.5 51.6 42.3 31.4 22 31.9 31.6 38.2 

Carreira et al. [32] 95.7 91.7 81.7 72.4 82.8 73.2 66.4 81.7 

Girdhar et al. [33] 72.8 75.6 65.3 54.3 63.5 60.9 51.8 63.5 

Fang et al. [34] 88.4 86.5 78.6 70.4 74.3 73 65.8 76.7 

Sun et al. [35] 92.3 90.1 83.4 74.5 78.2 75.4 72 80.8 

Deeper Cut [36] 70.9 59.8 53.1 44.4 50 46.4 39.5 52.0 
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zhang et al. [37] 90.1 88.3 82.5 71.8 75.1 70.7 67.9 78.1 

Geng et al. [38] 92.7 89.8 84.1 75 78.4 75.8 71.2 81.0 

Ours 93.5 91 85.5 77 80 78 74 82.7 

 

Table 1 presents a comparison of our model's PCK performance against recent methods on the 

MPII dataset. The analysis reveals that our approach has the best accuracy compared to all other 

keypoints, particularly in the detection of head (Hea), shoulder (Sho), elbow (Elb), wrist (Wri), hip 

(Hip), knee (Kne), and ankle (Ank) keypoints. Notably, our model achieved an average PCK (Avg. 

PCK) of 82.7%, significantly outperforming most of the compared methods. In contrast, classical 

methods such as DeeperCut and Girdhar et al. show limitations in detecting complex poses, especially 

for fine movements like elbow and wrist detection, with PCK values of 53.1% and 65.3%, 

respectively. This indicates that these methods struggle with keypoints that involve significant 

displacement or occlusion. Our model, by incorporating the Diverse Branch Block (DBB) and 

Efficient Multi-Scale Attention (EMA) mechanism, successfully improves the accuracy of detecting 

complex poses. This is particularly evident in the wrist (Wri) and ankle (Ank) keypoints, where our 

model achieved PCK values of 77.0% and 74.0%, respectively, showcasing exceptional performance. 

Moreover, when compared to the recent method proposed by Geng et al., our approach shows slight 

improvements across all keypoints, with an average PCK increase of 1.9 percentage points (from 

80.8% to 82.7%). This further validates the robustness and generalization capability of our model 

when dealing with diverse and complex human poses. Overall, the experimental results indicate that 

the HR-YOLOv8-DE model proposed in this study offers significant advantages in pose estimation 

tasks, particularly in handling complex and occluded poses. The higher accuracy and stability 

demonstrated by our model suggest its practical applicability in real-world scenarios and provide a 

solid foundation for future research in this area. 

 

Table 2. Comparison of PCK performance on the MPII dataset between our model and other state-

of-the-art methods. 

Methods 
mAP AP50 AP75 APM APL 

PARA

MS 
FLOPs 

YOLOv4-tiny [39] 66.2 83.62 74.22 67.72 72.22 9.26M 10.24B 

OpenPose[40] 68.4 84.72 75.92 68.82 73.32 9.07M 10.13B 
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Faster R-CNN [41] 70.6 86.92 77.72 70.92 74.42 9.00M 9.93B 

UAV-YOLOv8[42] 69.8 84.42 76.32 68.62 73.12 9.60M 10.53B 

DS-YOLOv8[39] 70.1 85.02 76.82 69.22 73.72 9.80M 10.73B 

YOLOv8-CGRNet [43] 72.5 86.22 78.92 70.62 75.82 9.50M 10.43B 

Ours 74.7 87.42 82.12 72.12 76.22 7.08M 10.23B 

 

Table 2 presents a comprehensive performance comparison of our method against other state-

of-the-art approaches on the COCO dataset. The analysis shows that our proposed model outperforms 

the others across all key performance metrics, with mAP of 74.7%, significantly higher than the other 

models. Specifically, YOLOv4-tiny and OpenPose achieved mAPs of 66.2% and 68.4% respectively, 

while Faster R-CNN reached 70.6%. In comparison, our model also demonstrated exceptional 

performance in AP50 and AP75, achieving 87.42% and 82.12% respectively, indicating that our 

method excels under both lenient and strict matching conditions. Moreover, in detecting medium-

sized objects APM and large objects APL, our model achieved 72.12% and 76.22% respectively, 

further showcasing its superiority in handling targets of varying sizes. Compared to other methods, 

our model's advantages in APM and APL are more pronounced, highlighting its robustness and 

generalization capabilities in complex scenarios.  

In addition to performance metrics, our model is also highly efficient in its complexity and the 

cost of computation. Our model has much lower number of parameters (7.08M) than known 

benchmark models, including DS-YOLOv8 (9.80M) and YOLOv8-CGRNet (9.50M), and has 

competitive floating-point operations (FLOPs) of 10.23B. This lower parameter volume makes our 

model lighter and thus it can be implemented in resource constrained environments more easily – 

without compromising on performance. The combined high accuracy and low computational 

overhead of our model makes it a good candidate in those situations where both performance and 

efficiency are paramount: it can achieve high accuracy levels at different levels of intersection-over-

union (IoU) and object sizes, and at the same time provide good performance in terms of 

computational efficiency. Our experimental results illustrate the high accuracy factor of our model 

with low computational overhead level: our model is capable of producing high accuracy rates at 

various levels of intersection-over-union (IoU) and object sizes, with concurrent low level of 

computational overhead. Such an improvement of performance-efficiency ratio is explained by 

innovative network architecture and focused optimization policies of the model. 
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5.2 Training Loss and PCKh@0.5 Performance 

 

Figure 6. Training loss and PCKh@0.5 performance. The left plot shows the training loss on the 

COCO (red) and MPII (black) datasets. The right plot illustrates the PCKh@0.5 on the MPII 

validation set. 

 

Figure 6 shows the performance of our model in the MPII and the COCO datasets in terms of 

training loss and the PCKh@0.5. The loss curves are showing a unique downward trend indicating 

successful development of learning in every epoch of training. First, the loss curves decrease at a high 

rate and then gradually flatten off as the model converges. It is interesting to note that the loss on the 

COCO dataset reduces more quickly than the loss on the MPII dataset – this could be due to 

differences in the complexity of the data or the quality of annotation in the two datasets, where it 

becomes possible to learn more efficiently on the COCO dataset. The curve in the MPII validation 

set of PCKh0.5 performance demonstrates that improvement is still rapid at the initial stages of 

training, and then, it levels off as the model reaches the optimal levels of performance. The last value 

of PCKh reaches 0.5 and is stabilized above 90 percent, which means that the accuracy of keypoint 

detection at the value of 0.5 IoU is high. This accuracy is essential in tasks where it is necessary to 

know the accurate position of the human in the positioning of the human body, like sports 

rehabilitation where correct identification of the body joints is vital in tracking of patient progress 

and rehabilitation body actions. All these findings confirm the strength of our model: it has low 

training loss with high PCKh at 0.5 accuracy. These emphasize its efficiency in both general object 

recognition (has been shown on COCO) and specific (human pose estimation) tasks (has been shown 

on MPII). 

5.3 Analysis of Ablation Experiment Results 

 

Table 3. Comparison of PCK performance on the MPII dataset between our model and other state-

of-the-art methods. 

Configuration COCO Dataset MPII Dataset 

AP50 AP50-95 APM APL PCKh@0.5 
Avg. 

PCK 
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Baseline 

(YOLOv8 only) 
85.16 60.36 59.84 74.84 - - 

+ HRNet (for 2D 

Pose Estimation) 
86.5 61.3 62 77 90.2 80 

+ EMA + HRNet 86.8 61.5 62.3 77.2 91 80.8 

+ DBB + HRNet 87 61.7 62.4 77.5 91.5 81.4 

+ EMA + HRNet 

+ DBB (Full 

Model) 

87.42 61.56 62.12 76.22 93.5 82 

 

Table 3 presents the results of an ablation study conducted on the COCO and MPII datasets, 

evaluating the impact of HRNet, EMA, and DBB components on the model's performance, with a 

focus on enhancing human-robot interaction in sports rehabilitation. On the COCO dataset, the 

baseline model (YOLOv8 only) demonstrates solid object detection capabilities, achieving an AP50 

of 85.16 and an AP50-95 of 60.36, essential for tracking athletes and guiding rehabilitation exercises. 

Integrating HRNet improves detection performance, with AP50 increasing to 86.50 and AP50-95 to 

61.30, showing that HRNet enhances the model’s capacity for both object detection and 2D pose 

estimation. Adding EMA further improves the model's precision and robustness, increasing AP50 and 

AP50-95 to 86.80 and 61.50, respectively. The inclusion of DBB boosts these metrics further, with 

AP50 reaching 87.00, highlighting DBB's role in enhancing feature extraction. The full model, 

combining EMA, HRNet, and DBB, achieves the best performance on the COCO dataset, with an 

AP50 of 87.42 and an AP50-95 of 61.56, demonstrating the complementary strengths of these 

components. On the MPII dataset, HRNet is crucial for accurate 2D pose estimation, achieving a 

PCKh@0.5 of 90.2 and an Avg. PCK of 80.0. Adding EMA leads to slight improvements, with 

PCKh@0.5 reaching 91.0. DBB further boosts performance, with PCKh@0.5 increasing to 91.5 and 

Avg. PCK to 81.4. The full model achieves the highest performance, with a PCKh@0.5 of 93.5 and 

an Avg. PCK of 82.0, demonstrating the enhanced accuracy and robustness needed for effective 

human-robot interaction in sports rehabilitation. 

5.4 Presentation of Results 
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Figure 7. Verification of HR-YOLOv8-DE in real-world scenarios. 

 

The capacity to detect the keypoint of the HR-YOLOv8-DE network is presented in figure 7 and 

in various settings of sports-related scenarios such as skiing, running, and ball games. The detection 

outcomes also reveal the strength and accuracy of the model to deal with complicated motion 

challenges, which can allow a correct identification and location of several moving human objects. 

Each located person is highlighted with red bounding boxes, and green and blue lines between the 

keypoints are useful to test the ability of the model to reconstitute human poses across a range of 

contextual situations. Both the variety of the tested scenarios and the fact that the HR-YOLOv8-DE 

network was tested there substantiates the high level of applicability and, at the same time, 

accentuates its possible value in the sports rehabilitation. In rehabilitation training, it is important that 

the robot systems detect keypoint accurately in order to conduct real-time tracking and control of the 

patient – this is because it makes the rehabilitation exercises accurate and safe and thus improves the 

effectiveness of the rehabilitation process as a whole. These findings represent that the HR-YOLOv8-

DE network can be reliably used in various demanding settings, which makes it one of the tools that 

can be utilized to further research human-robot interaction (HRI) in the context of sports rehabilitation. 

6. Conclusions 

This paper introduces the network HR-YOLOv8-DE that has significant potential in the further 

development of human-robot interaction (HRI), especially in the area of sports rehabilitation. We 

show by systematically designed experiments that the combination of the Diverse Branch Block 
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(DBB), HRNet, and Energetic Multi-Scale Attention (EMA) mechanisms provides a synergistic 

improvement of the system’s ability to accurately detect and analyze the complex human movements. 

Namely, DBB reinforces multi-scale feature extraction, HRNet conserves high-resolution data to 

estimate the pose with accuracy, and EMA re-prioritizes task-relevant features depending on the 

changing conditions – all of which boost the network performance in motion analysis. 

Empirical tests of COCO and MPII datasets prove that the HR-YOLOv8-DE network performs 

better than various state-of-the-art models and provides better accuracy in human pose detection and 

estimation. Its capability of recording the finer details of human movement is especially useful in 

sports rehabilitation cases where the accuracy and dependability of motion analysis is essential in 

determining the course of therapeutic treatment. Although these are positive findings, the HR-

YOLOv8-DE network has significant weaknesses. By integrating sophisticated components (DBB, 

HRNet, EMA), it is more accurate, but also more complex to compute and therefore might not be 

applicable to real-world applications in resource-limited settings (e.g., edge computing platforms to 

run on-site rehabilitation). Also, although the network is efficient in controlled experimental 

conditions, its effectiveness in actual rehabilitation conditions (where the variations in lighting and 

patient movement patterns as well as in environmental distractions are much higher) should be 

validated. This work generates several significant research directions that can be identified in the 

future. The first one is the focus on making the HR-YOLOv8-DE network more resource-efficient on 

a resource-constrained device: it can be considered to prune the network models, quantize weights, 

or create lightweight variants of attention models, as this approach can help minimize the 

computational cost without compromising the quality of detections. Second, it is crucial to establish 

the effectiveness of the network in various, dynamic rehabilitation environments – this involves 

adding more modalities to the network (e.g., force sensor data, electromyography (EMG) signals or 

audio feedback) to enhance patient monitoring, which allows assessing the quality of movement and 

muscle activity more comprehensively. Third, future researchers can take advantage of the real-time 

analysis feature of the network to create adaptive rehabilitation plans: it is possible to monitor and 

improve patient progress in real time, but the model can also adjust the parameters of exercises (e.g., 

intensity, range of motion) in real-time based on feedbacks, and thus, personalized therapeutic 

interventions can be created. 

To conclude, the HR-YOLOv8-DE network can be considered a major breakthrough in the field 

of AI-assisted sports rehabilitation because it is capable of performing highly accurate real-time 

movement tracking as a way of supporting HRI-related interventions. Although the issues concerning 

the efficiency of computation and the ability to adjust to the real-life conditions are still present, the 

model shows a great potential to enhance patient rehabilitation results. The future needs to optimize 

the network so that it can be practically deployed into work to achieve a situation where it is able to 

effectively address the needs of various clinical and rehabilitation settings. 
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