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ABSTRACT

The integration of human-robot interaction within sports rehabilitation marks a significant
advancement in improving the precision and effectiveness of therapeutic exercises. However, existing
models often fail to accurately capture and analyze the intricate, dynamic movements required in
rehabilitation, resulting in inadequate feedback and less optimal patient outcomes. To address these
challenges, we propose the HR-YOLOvV8-DE network, which integrates Diverse Branch Block
(DBB), HRNet, and Efficient Multi-Scale Attention (EMA). This model is designed to enhance multi-
scale feature extraction, maintain high-resolution pose estimation, and adaptively prioritize relevant
features across varying conditions. Experimental results demonstrate the superior performance of our
approach, with the HR-YOLOV8-DE model achieving a PCK of 82.0% on the MPII dataset and a
mAP of 74.7% on the COCO dataset, significantly outperforming existing methods. These
advancements not only improve the accuracy and adaptability of human motion analysis in
rehabilitation but also set a new standard for future developments in robotic-assisted therapeutic
interventions.

Keywords: Human-robot interaction, Sports rehabilitation, Pose estimation, HRNet, Multi-scale
feature extraction, Efficient multi-scale attention.

1. Introduction

Sports and exercise have long been recognized as integral components of a healthy lifestyle, and
their incorporation into rehabilitation programs can provide holistic benefits to patients. As an
essential rehabilitative approach, sports rehabilitation aims to help patients restore impaired motor
functions, enhancing their quality of life and autonomy [1]. This mode of rehabilitation is not only
applicable to individuals recovering from sports injuries but also extends to patients affected by
neurological disorders, chronic pain, and other health issues [2]. While sports rehabilitation plays a
vital role in fostering recovery and improving quality of life, it still faces numerous challenges in
practice. In modern society, there is a growing recognition of the importance of sports rehabilitation,
particularly with the increasing aging population and lifestyle changes. However, traditional
rehabilitation methods often encounter limitations such as a lack of personalization, difficulties in
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measuring outcomes, and challenges in maintaining long-term commitment [3]. Moreover,
conventional rehabilitation programs typically require patients to visit medical facilities for training,
posing inconvenience and discomfort for those with mobility issues. Therefore, enhancing the
personalization, effectiveness, and sustainability of sports rehabilitation has become an urgent issue
in the field. Amidst these challenges, technological advancements have introduced new opportunities
for sports rehabilitation. Multimodal robots, as emerging rehabilitative aids, have garnered
widespread attention [4]. These robots integrate various sensory modalities, such as vision, sound,
and touch, and are equipped with a degree of intelligence and adaptability. By interacting with
patients, multimodal robots can monitor their movement in real-time, provide personalized training
and guidance, and offer an improved rehabilitation experience [5]. In this context, research into
leveraging multimodal robots for more intelligent and effective human-machine interaction in sports
rehabilitation has begun to flourish. This research encompasses not just the hardware design and
technical realization of robots but also the application of artificial intelligence in human-machine
interactions. Al technologies, particularly machine learning and deep learning, have made significant
strides, offering robust support for the human-machine interaction capabilities of multimodal robots
in sports rehabilitation [6, 7]. With the guidance of Al, multimodal robots are poised to become vital
assistants in future sports rehabilitation, providing more personalized and effective services to
patients, and promoting enhanced and accelerated recovery outcomes.

Extensive investigations into human-robot interaction (HRI) with multimodal robotic systems
have been conducted in the field of sports rehabilitation, aiming to address the limitations of
traditional rehabilitation methods via advanced technological approaches and deliver more intelligent
and personalized rehabilitation services. One study is an HRI-enhanced multimodal robotic system
of sports rehabilitation based on the integration of an attention mechanism to dynamically weight
information of the various sensory modalities used to identify and analyze movement behaviors of
patients although its design and implementation needs further optimization to make it applicable and
stable in complex environmental settings. The other study suggested a multimodal robotic platform
which uses a better transformer model at natural language understanding and generation, with visual
and auditory perception, to ease HRI in sport rehabilitation scenarios. Although this system has
proved much progress in language understanding, it remains weak in action identification and act
direction in the real-life interaction situation [9]. Also, one of the developments is the use of
reinforcement learning algorithms to create individual rehabilitation guidelines. The model in
question uses a deep Q-network (DQN) to discover the best rehabilitation measures that can be
applied to the requirements of each patient and their progress [10]. The system has brought significant
improvements in rehabilitation outcomes through the simulation of different rehabilitation scenarios
as well as optimization of action strategies through reinforcement learning. Nevertheless, the model's
sample complexity and sensitivity to reward function design present challenges for real-world
deployment, necessitating further exploration and refinement. While their system has made notable
progress in personalized rehabilitation guidance, improvements are still needed in the model's
interpretability and explainability. These studies provide various approaches and methods for human-
robot interaction with multimodal robots in sports rehabilitation. However, each method has certain
limitations, such as issues with real-time performance, stability, language understanding, action
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recognition, and multimodal information fusion.

In an attempt to eliminate constraints of previous research, we trained the HR-YOLOvV8-DE
network of sports rehabilitation integrated with human-robot interaction. This network consists of 3
important additions. First, we have substituted the Bottleneck block at YOLOvV8 with the Diverse
Branch Block (DBB) which improves the feature extraction of the network. Second, we incorporated
the High-Resolution Network (HRNet) to enhance the accuracy of the pose estimation and fine details.
Lastly, we have incorporated the Efficient Multi-Scale Attention (EMA) mechanism to enhance the
perception of multi-scale features to allow our model to give more precise motion tracking and
customized advice to rehabilitation robots. This assists the patients to do more productive
rehabilitation exercises. In addition, the integrated technologies make the model very robust and
generalize well, thus being applicable to a wide range of rehabilitation scenarios and patient
population. To sum up, the HR-YOLOV8-DE network is a novel method of HRI-integrated sports
rehabilitation study, which has both theoretical and practical importance.

Here are the three main contributions of the paper:

e This paper introduces a novel HR-YOLOV8-DE network that integrates Diverse Branch Block
(DBB), HRNet (High-Resolution Network), and Efficient Multi-Scale Attention (EMA)
mechanisms. Compared to existing models, the HR-YOLOvV8-DE network demonstrates
significant improvements in feature extraction, multi-scale feature perception, and high-
resolution pose estimation, thereby enhancing human-robot interaction in sports rehabilitation.

e By incorporating HRNet, the proposed model achieves higher accuracy in pose estimation,
capturing and analyzing detailed patient movements more effectively. This enhancement allows
the robotic system to provide more precise and personalized rehabilitation guidance, significantly
improving patient recovery outcomes.

e The integration of the EMA mechanism enables the HR-YOLOV8-DE network to adaptively
prioritize relevant features under varying conditions, enhancing its ability to perceive multi-scale
features. This advancement improves the model's robustness and generalization capabilities in
complex environments, making it more effective across diverse rehabilitation settings and patient
populations.

These contributions not only advance the field of robotic-assisted sports rehabilitation but also
establish new benchmarks for future developments in rehabilitation technology.

2. Literature Review

2.1 Advancements in Multimodal Data Fusion and Motion Analysis for Rehabilitation Robotic

Recent advancements in the field of rehabilitation robotics have increasingly focused on the
integration of multimodal data fusion techniques and real-time motion analysis technologies to
enhance patient outcomes. Multimodal data fusion techniques aim to improve human-computer
interaction by integrating data from various perceptual modalities, such as vision, speech, and touch,
to provide a comprehensive understanding of patients' movement states. These methods involve
designing and optimizing models that fuse different data modalities to enhance the monitoring and
analysis of patient behaviors, thereby improving the accuracy and responsiveness of rehabilitation
systems [11, 12]. Despite progress, challenges such as suboptimal data fusion results and low
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accuracy in recognizing complex movements remain, necessitating further research to improve model
architectures and fusion strategies.

Real-time motion data collection and processing technologies are essential in rehabilitation that
records and measures patient motions. Such technologies include the implementation and integration
of different sensors, development of data acquisition systems to guarantee proper data transmission
and storage [13, 14]. Real-time data processing consists of such steps as data preprocessing, feature
extraction, action recognition, and motion trajectory analysis (which is a strong background support
of real-time monitoring and feedback) [15, 16]. The current problems are optimization of the
collection of various data streams with synchronization and improved stability and accuracy of the
system when operating in a complex environment. The next step of the research is to utilize the latest
data mining and machine learning to enhance the real-time motion data technologies and become
more intelligent and custom-made rehabilitation robot systems.

2.2 Application of Detection, Tracking, and Reinforcement Learning Techniques in
Rehabilitation Robotics

The combination of detection and tracking systems and reinforcement learning algorithms is a
new area of research in the intelligent rehabilitation robotics field. The target detection and tracking
technologies are developed to provide the ability to perform real-time monitoring and guidance by
identifying and tracking the movement targets of patients (body parts or rehabilitation equipment) in
dynamic environments [17, 18]. These technologies provide essential data regarding the movement
patterns of patients, which can be further used to identify the appropriate action and track the current
trajectory. Nonetheless, issues exist in simultaneous sensing and tracking of a number of moving
targets under different lighting conditions and body postures that undermines the stability and strength
of the system [19]. Further studies are needed to come up with better detection and tracking
algorithms, combining deep learning and conventional computer vision methods to improve the
accuracy and real-time analysis of rehabilitation systems.

Reinforcement learning algorithms have a great potential too in streamlining the decision level
and the control strategies of rehabilitation robots. These algorithms enable the robots to learn through
their interactions with the environment, which optimizes actions to maximize the cumulative rewards
— a feature that is especially useful in the development of personalized rehabilitation plans, motion
paths and the development of motion control strategies [20, 21]. By teaching through reinforcement,
the robot will also be able to adjust to the expectations of individual patients and keep improving their
approaches through ease of learning [22, 23]. However, the intricacy and diversification of the robot-
patient interaction situations make it difficult to create efficient reward functions and state
representations, and the problems of high sample complexity and data sparsity also worsen the
performance [24]. The optimization of reinforcement learning algorithms to be used in rehabilitation-
oriented applications should be a subject of research in the future because it will result in smarter and
more personalized robots.

3. Methods

3.1 Overview of Our Network
The HR-YOLOV8-DE network integrates key components to enhance its functionality for
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human-robot interaction in sports rehabilitation. Figure 1 illustrates the overall architecture of the
model, which combines advanced components to ensure precise motion detection and pose estimation.
The model replaces the standard Bottleneck module with the Diverse Branch Block (DBB) to improve
multi-scale feature extraction for more accurate detection of diverse movements. HRNet is
incorporated to maintain high-resolution features, enabling precise pose estimation of complex
human motions. Additionally, the Efficient Multi-Scale Attention (EMA) mechanism dynamically
focuses on relevant features across scales, enhancing detection and adaptability to varying conditions.
As shown in Figure 2, the construction of the network begins with systematically replacing the
YOLOvV8 backbone with DBB to create a more robust feature extraction base. HRNet is then
integrated to focus on pose estimation, ensuring detailed human movement analysis, while EMA is
added to manage and prioritize features dynamically across scales. Each of these components is
carefully configured to work synergistically, resulting in a model that is capable of delivering accurate,
real-time motion monitoring and adaptive feedback in complex rehabilitation environments.
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Figure 1. Overall Network Architecture of HR-YOLOV8-DE
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Figure 2. Architecture of the enhanced YOLOvV8 network integrated with DBB and EMA.

By combining these advanced technologies, the HR-YOLOV8-DE network provides a novel
approach that aligns with the goals of enhancing human-robot interaction in sports rehabilitation. The
model’s improved accuracy and adaptability make it a valuable tool for developing more effective
rehabilitation programs, demonstrating significant theoretical importance and practical application
value in advancing rehabilitation robotics.

3.2 Diverse Branch Block

The Diverse Branch Block (DBBIlock) is a neural network module designed to enhance feature
extraction capabilities, conceived from a comprehensive consideration of feature hierarchies and
receptive field sizes [25]. In traditional neural networks, feature extraction is typically achieved
through a series of convolutional and pooling layers, whose configurations are usually fixed,
extracting features from set scales. However, objects in real-world data often vary in scale and
complexity, and a single feature extraction layer may not effectively capture targets across all scales
and complexities. The DBBIlock introduces multiple parallel branches, each with a different receptive
field size and feature extraction capacity [26]. This design allows the DBBIlock to extract features
across multiple scales and levels, which are then fused in subsequent layers, thereby improving the
model’s detection ability for multi-scale and complex targets.

The integration of the Diverse Branch Block (DBBIlock) into our model plays a pivotal role.
First, the DBBlock embeds multiple branches within the network, where each branch extracts features
across different scales. This design effectively mitigates the limitations of traditional models in
handling multi-scale targets, enabling our model to capture target information more comprehensively
under the diverse scenarios of sports rehabilitation and thereby enhancing its detection accuracy and
robustness. Second, the DBBIlock strengthens the model’s feature extraction capability, which
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facilitates the processing of multimodal data. In the research on multimodal human-robot interaction
(HRI) for sports rehabilitation, a model capable of fully capturing multimodal information is essential
to achieve accurate motion monitoring and personalized rehabilitation guidance. The incorporation
of the DBBIlock endows our model with this capability, allowing it to better adapt to the varied
characteristics of multimodal data and further advancing HRI research in this field. The architecture
of the DBBIock is illustrated in Figure 3.
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Figure 3. The design of DBB architecture

Following is the primary mathematical derivation process elucidating DBB: The feature map of
the i-th branch is computed as follows:

FO = wt -x+p® [Formular 1]
where: E is the feature map of the i-th branch, W and BY are the weights and biases of the

i-th branch, respectively, X is the input feature map. The aggregated feature map is obtained by
summing the feature maps of all branches:

F=2X F® [Formular 2]

where: F is the aggregated feature map. N is the total number of branches. The rectified feature
map is computed using the rectified linear unit activation function:

F =ReLU(F) [Formular 3]

where: F is the rectified feature map. The gated feature map is obtained by convolving the
rectified feature map with the gating kernel:

G =Conv(F K) [Formular 4]

where: G is the gated feature map. K is the gating kernel. The final output feature map is
obtained by element-wise multiplication of the rectified feature map and the sigmoid of the gated
feature map:
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H=0(G)OF [Formular 5]

where: H is the final output feature map. o(*) is the sigmoid activation function. © denotes
element-wise multiplication.

3.3 Efficient Multi-Scale Attention

The Exponential Moving Average (EMA) Attention is an attention mechanism designed to
enhance the model's understanding of the interrelations between different sensory modalities. It
employs an exponential moving average approach to dynamically compute and update attention
weights, thereby capturing the correlations between various sensory modalities more effectively [27].
Specifically, by considering the attention weights from historical moments, the EMA Attention
allows the model to allocate more focus to the current input data, thus enhancing the model’s
capability to analyze data correlations [28]. This dynamic attention mechanism aids the model in
understanding the relationships between multimodal data more flexibly and accurately, thereby
improving the model's performance and generalization abilities.

EMA Attention is a component of our model which has significant advantages. On the one hand,
it increases the ability of the model to determine correlations between data of different modalities,
which makes it more robust in integrating these data. Multimodal data (visual, auditory and tactile),
which are characteristic of sport rehabilitation, may show natural interrelations. The EMA Attention
is introduced so that the model can utilize these correlated data in a better way and its performance is
further boosted and the results are better. Second, EMA Attention enables the dynamically computed
and updated weights of attention to improve the ability of the model to adapt to changes across time
and data types, thus improving its robustness and generalization. This dynamic concentration process
allows the model to modify the allocation of attention according to the real-time changes in data, and
better adaptation to different situations and demands is achieved. Figure 4 describes the network
structure of EMA.
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Figure 4. Overall Network Architecture Diagram of EMA

Hereafter, we outline the principal mathematical derivation process for EMA: The exponential
moving average (EMA) calculation updates the moving average with a decay factor:

Sy =0a-X;+(I-a)- Sy [Formular 6]

where: St is the EMA at time {, %+ is the input value at time t, @ is the decay factor, typically
between 0 and 1.

The exponential moving average (EMA) is normalized to obtain the attention weights:

&5t

o oyt [Formular 7]

A=

where: At is the attention weight at time t. T is the total number of time steps. The context
vector is calculated as the weighted sum of input values using the attention weights:

C=Xe=1A Xy [Formular 8]
where: C is the context vector. The output is computed by combining the context vector and
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the input values:

Y =W C+ Wy X [Formular 9]

where: Y is the output. We and Wx are the weight matrices for the context vector and input
values, respectively. The EMA attention mechanism can be updated iteratively using the
backpropagation algorithm:

[#)
8S¢ Y &8Ac 85t [Formular 10]

where: L is the loss function.

3.4 High-Resolution Network

The High-Resolution Network (HRNet) is designed to improve the accuracy of pose estimation
tasks by maintaining high-resolution representations throughout the network’s layers. Unlike
traditional architectures that down-sample input images to low resolutions and then up-sample them
back, HRNet continuously processes features at multiple resolutions in parallel. This approach
enables the network to capture fine-grained details and spatial information more effectively, which is
crucial for accurate pose estimation in scenarios involving complex human motions. The HRNet
architecture consists of several stages where high-resolution sub-networks operate alongside low-
resolution sub-networks, with continuous information exchange between them. Figure 5 illustrates
the architecture of HRNet.
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Figure 5. Architecture of HRNet.

HRNet uses several key mathematical operations to maintain high-resolution representations
and improve pose estimation accuracy, as outlined in the following equations:

Formula for Feature Map Calculation at Layer I: To calculate the feature map at a given layer,
HRNet utilizes convolutional operations across multiple branches:
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1 _ l -1 l
Fi=W;*F;, "+ B [Formular 11]
1 . I :
Where Fi represents the feature map of the i-th branch at layer 1, Wi denotes the weights for the

i -1 . : I, .
convolutional layer, Fi ~ is the feature map from the previous layer, and Bi is the bias term.
Formula for Multi-Resolution Fusion: HRNet performs multi-resolution fusion to merge feature

maps from different branches at each layer.

1+1

P = i 0FE =P

[Formular 12]

1+1 . . | 1+1
where F ' is the feature map for branch i at layer 1+1 iFi—>F+) represents the

transformation function that fuses feature maps from branch 1 to branch 1, and 1 is the total number
of branches. Formula for Feature Map Fusion: To integrate feature maps across all branches, HRNet
applies a fusion operation:

Fadion _ 0 1+
Fro =@ F [Formular 13]

where preen denotes the fused feature map at layer 1 T1, and © represents the fusion operation
that aggregates the features from all branches. Loss Function for Keypoint Estimation: The loss
function for keypoint estimation is designed to minimize the error between predicted and true
keypoint positions:

1 N B 2
LHRNet = NZk=1 I PPy I [Formular 14]

where Lurnet is the loss function for HRNet, Pk is the ground truth position of keypoint k, Pi is

the predicted position of keypoint k, and N is the total number of keypoints. Prediction of Keypoint

Position: HRNet predicts the keypoint positions based on the fused feature map:

Fardion

P, =6(Wou * F + bout) [Formular 15]

where P is the predicted keypoint position, o denotes the activation function (such as Softmax),
Wout represents the output layer weights, I " is the fused feature map from the final layer, and

bout is the bias term associated with the output layer.

HRNet has been incorporated in our model improving significantly its performance. At each
step, keeping the details on a high level, HRNet increases the accuracy of the pose estimation, an
essential feature of tracking small movements and postural alterations in sports rehabilitation. The
model has a powerful architecture that allows it to generalize the wide range of rehabilitation activities,
including simple and complex motions based on the learning of rich spatial representations. The
development aids in the more correct and credible human pose estimation, which in turn helps to
introduce more adaptive and personalized rehabilitation guidelines.

4. Experiment

4.1 Dataset

This article uses two data sets, namely the COCO (Common Objects in Context) Dataset [29]
and MPI1I Human Pose Dataset [30]. They are important multi-modal data resources widely used in
tasks such as target detection, segmentation, key point detection, and three-dimensional
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reconstruction. The rich content and precise annotations of these two data sets provide a reliable
foundation and verification for our research, and provide strong support for our model design and
experimental results.

The COCO (Common Objects in Context) dataset is a large multi-modal dataset widely used for
tasks such as object detection, segmentation, and key point detection. Created by Microsoft Research,
the dataset contains images in a variety of scenes, covering a rich variety of object categories and
complex environmental backgrounds. Specifically, the COCO dataset contains approximately
100,000 images, each image contains annotation information for multiple objects, and there are
annotations for more than 300,000 object instances. These object instances include common object
categories such as animals, human bodies, vehicles, and furniture. The annotation information of the
COCO dataset includes object bounding boxes, segmentation masks, key point locations, etc.,
providing rich training and evaluation data for various computer vision tasks. In addition, the COCO
dataset also provides rich scene and background information, which helps the model's generalization
ability and robustness in complex environments. In general, the COCO dataset is a standard dataset
widely used in tasks such as target detection, segmentation, key point detection, etc. It has rich multi-
modal data and precise annotation information, and is suitable for the training of various deep learning
models. and assessment.

The MPII Human Pose Dataset is specifically designed for human pose estimation tasks and is
sourced from the internationally recognized video platform, YouTube. The dataset has been carefully
curated to cover a wide range of everyday life and sports scenarios. It contains approximately 25,000
images and over 40,000 human samples, with each sample annotated with 16 key points (such as
wrists, elbows, shoulders, and knees) that are crucial for accurately analyzing and understanding
human movements. The images in the dataset are of high quality, with clear resolution and diverse
scenes, encompassing a variety of situations from static postures to complex dynamic activities, such
as running, jumping, and yoga. The dataset also includes variations in background, lighting conditions,
and interactions between multiple individuals, which adds complexity to pose estimation and enriches
the dataset. The sample collection process emphasizes diversity and balance, ensuring a broad
representation of different ages, genders, body types, and clothing. These characteristics make the
MPII dataset particularly suitable for training and evaluating pose estimation models that need to
handle complex environments and variable movements, providing strong data support for research in
human-robot interaction in sports rehabilitation.

4.2 Experimental environment

In the experiments of this article, we used a high-performance computer equipped with NVIDIA
GeForce RTX 3090 GPU, Intel Core i9-11900K CPU and 64GB memory as the experimental
environment. The operating system is Ubuntu 20.04 LTS, and the main programming language is
Python 3.8. We use the PyTorch deep learning framework to build the model and leverage CUDA to
accelerate GPU computing. The experimental environment includes some commonly used Python
libraries, such as NumPy, Pandas and Matplotlib, for data processing, visualization and experimental
result analysis. In addition, deep learning-related libraries are used, including torchvision,
tensorboard, and scikit-learn, to build, train, and evaluate models. We make full use of high-
performance computers and advanced deep learning frameworks to provide a solid foundation for
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human-computer interaction research on multi-modal robots in sports rehabilitation. Such an
experimental environment provides reliable reference for research and promotes the application and
development of human-computer interaction technology in the field of rehabilitation.

4.3 Implementation Details

4.3.1. Data processing

To prepare the COCO and MPI1I Human Pose datasets for training the improved YOLOv8 model,
several preprocessing steps were undertaken to ensure consistency and enhance model performance.
Data Normalization
The size of all images was standardized by reducing the size of all images to a resolution of 256x192
pixels. The Pixel values were normalised in the range [0, 255] to [0, 1] and each channel of the RGB
was normalised with the mean ([0.485, 0.456, 0.406]) and the standard deviation ([0.229, 0.224,
0.225]) of the COCO dataset. Moreover, keypoint coordinates of the two datasets were normalised
based on the dimensions of images, and all the coordinates were transformed into the [0, 1] scale.
Normalization guarantees reliable data allocation and uniform distribution of keypoints across data
sets.
Cropping and Resizing
To maintain the integrity of human poses, the images with different aspect ratios were center cropped
before being resized to the desired 256x192 resolution. This will avoid distortion of the body
proportions as much as the important components of the body will be visible and pose information
will be saved to be analyzed correctly.
Data Augmentation
Data augmentation techniques (random rotation (x30deg), horizontal flip (50% probability), scaling
(0.75-1.25x size of original image), and translations (up to 10% of image size)) were used to improve
the overall generalization property of the model. These additions bring about a difference in pose,
scale and orientation, and the model learns in a robust manner across varied conditions.
Keypoint Descriptions
COCO dataset has annotations of 17 keypoints (nose, eyes, ears, shoulders, elbows, wrists, hips, knees
and ankles) that are important body joints and areas of the body that are necessary to analyze human
movements in the rehabilitation of sports. The MPII Human Pose dataset offers the annotation of 16
keypoints, which are concentrated on the large joints of a human body, and can be applied to
understand various human postures and actions. These annotations are essential in training the model
to predict and track human poses (2D) correctly.

4.3.2. Network parameter setting

To optimize the performance of the HR-YOLOvV8-DE network for sports rehabilitation tasks,
we configured several key parameters. The model utilizes Diverse Branch Blocks (DBB) with
convolutional layers of 1x1, 3x3, and 5x5 kernels to capture multi-scale features effectively. HRNet
is integrated to maintain high-resolution feature representations, essential for precise pose estimation.
The Efficient Multi-Scale Attention (EMA) mechanism is employed with 8 attention heads and an
exponential moving average factor of 0.99, enhancing the model's focus on relevant features. For
training, we applied stochastic gradient descent (SGD) with a momentum of 0.9 to facilitate faster
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convergence and set the weight decay to 0.0001 to prevent overfitting. The model was trained to
minimize a keypoint regression loss, aiming to reduce the error between predicted and actual
keypoints, thereby ensuring robust performance in human motion analysis for rehabilitation.

4.4 Evaluation Metrics

In the object detection task, evaluating model performance requires the use of multiple robust
metrics to measure the accuracy and generalization ability of the model. In this study, we used mAP
(mean average precision)-like metrics on the COCO dataset to evaluate object detection performance,
and PCK (Percentage of Correct Keypoints) metrics on the MPIl Human Pose dataset to evaluate the
accuracy of pose estimation. Average Precision (AP): AP represents the precision of the model
averaged over different recall levels at a specific loU threshold. Two commonly used thresholds are
AP50 and AP75, where the loU is set to 0.5 and 0.75, respectively.

. ¥, TPGY

Li=1 (TP BV +FpliV) [Formular 16]

AP =

where TP&]IJ is the number of true positives at a given loU threshold for the i-th class, FP@U IS

the number of false positives, and N is the total number of classes. AP50 and AP75 correspond to
loU thresholds of 0.5 and 0.75, respectively, representing different levels of overlap between
predicted and ground truth bounding boxes. Mean Average Precision (MAP): mAP is the mean of AP
values computed at multiple IoU thresholds, providing a comprehensive measure of the model’s
performance across varying levels of overlap requirements. It is calculated as:

_ 1y
mAP = Xe=1 APioy, [Formular 17]

where T is the total number of loU thresholds, and AP!°U: is the average precision at each

threshold loUt. Average Precision for Medium Objects (APM): APM evaluates the average precision
specifically for medium-sized objects, assessing the model’s effectiveness in detecting objects of
intermediate size.

1 f‘ {hkdi
APM = - Xiog ApHedium [Formular 18]

where AP™™ s the average precision for medium-sized objects in the i-th class, and N is the

total number of classes.
Average Precision for Large Objects (APL): APL measures the average precision for large-sized
objects, reflecting the model’s ability to detect larger objects accurately.

_LyN ap)
APL = = Yiz1 APjgrge [Formular 19]

where AP s the average precision for large-sized objects in the i-th class, and N is the total
number of classes.

PCK (Percentage of Correct Keypoints): PCK is a metric used to evaluate the accuracy of
keypoint detection in pose estimation tasks. It represents the proportion of correctly detected
keypoints within a certain error threshold. Specifically, a predicted keypoint is considered correct if
its distance from the corresponding ground truth keypoint is within a given threshold. Typically, this
threshold is set as a fraction of the head size of the target person (e.g., PCK@0.5 means the threshold
is 50% of the head size). The formula for calculating PCK is as follows:
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PCK = + Zi=18 (di <o~ s1)

[Formular 20]

where: N is the total number of keypoints.di represents the Euclidean distance between the

predicted keypoint 1 and the corresponding ground truth keypoint. sj is the normalization factor (such

as the head size). @ is the threshold ratio. 3( - ) is an indicator function that equals I if the condition is

met, and O otherwise.

5 Results

5.1 Performance Comparison Across Datasets

Table 1. Comparison of PCK performance on the MPII dataset between our model and other state-

of-the-art methods.

Method Medi

Hea | Sho | Elb | Wri | Hip | Kne | Ank an
PCK

Igbal et al. [31] 56.5 | 51.6 | 423 | 314 | 22 | 319 | 31.6 | 382
Carreira et al. [32] 95.7 | 91.7 | 81.7 | 72.4 | 828 | 732 | 66.4 | 817
Girdhar et al. [33] 728 | 75.6 | 65.3 | 54.3 | 635 | 60.9 | 51.8 | 635
Fang et al. [34] 88.4 | 865 | 786 | 70.4 | 743 | 73 | 658 | 76.7
Sun et al. [35] 923 | 90.1 | 834 | 745 | 782 | 75.4 | 72 | 808
Deeper Cut [36] 709 | 59.8 | 53.1 | 444 | 50 | 46.4 | 395 | 520
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zhang et al. [37] 90.1 | 88.3 | 825 | 71.8 | 75.1 | 70.7 | 67.9 | 78.1
Geng et al. [38] 927 | 898 | 841 | 75 | 784 | 758 | 71.2 | 810
Ours 935 | 91 |85 | 77 | 80 | 78 | 74 | 827

Table 1 presents a comparison of our model's PCK performance against recent methods on the
MPII dataset. The analysis reveals that our approach has the best accuracy compared to all other
keypoints, particularly in the detection of head (Hea), shoulder (Sho), elbow (Elb), wrist (Wri), hip
(Hip), knee (Kne), and ankle (Ank) keypoints. Notably, our model achieved an average PCK (Avg.
PCK) of 82.7%, significantly outperforming most of the compared methods. In contrast, classical
methods such as DeeperCut and Girdhar et al. show limitations in detecting complex poses, especially
for fine movements like elbow and wrist detection, with PCK values of 53.1% and 65.3%,
respectively. This indicates that these methods struggle with keypoints that involve significant
displacement or occlusion. Our model, by incorporating the Diverse Branch Block (DBB) and
Efficient Multi-Scale Attention (EMA) mechanism, successfully improves the accuracy of detecting
complex poses. This is particularly evident in the wrist (Wri) and ankle (Ank) keypoints, where our
model achieved PCK values of 77.0% and 74.0%, respectively, showcasing exceptional performance.
Moreover, when compared to the recent method proposed by Geng et al., our approach shows slight
improvements across all keypoints, with an average PCK increase of 1.9 percentage points (from
80.8% to 82.7%). This further validates the robustness and generalization capability of our model
when dealing with diverse and complex human poses. Overall, the experimental results indicate that
the HR-YOLOV8-DE model proposed in this study offers significant advantages in pose estimation
tasks, particularly in handling complex and occluded poses. The higher accuracy and stability
demonstrated by our model suggest its practical applicability in real-world scenarios and provide a
solid foundation for future research in this area.

Table 2. Comparison of PCK performance on the MPII dataset between our model and other state-
of-the-art methods.

PARA

Methods mAP | AP® | AP | APM | AP | US| FLOPS
YOLOV4-tiny [39] 66.2 | 83.62 | 7422 | 67.72 | 72.22 | 9.26M | 10.24B
OpenPose[40] 68.4 | 84.72 | 75.92 | 68.82 | 73.32 | 9.07M | 10.13B
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Faster R-CNN [41] 70.6 | 86.92 | 77.72 | 70.92 | 74.42 | 9.00M | 9.93B
UAV-YOLOV8[42] 69.8 | 84.42 | 76.32 | 68.62 | 73.12 | 9.60M | 10.53B
DS-YOLOV8[39] 70.1 | 85.02 | 76.82 | 69.22 | 73.72 | 9.80M | 10.73B
YOLOV8-CGRNet [43] 725 | 86.22 | 78.92 | 70.62 | 75.82 | 9.50M | 10.43B
Ours 747 | 87.42 | 8212 | 7212 | 76.22 | 7.08M | 10.23B

Table 2 presents a comprehensive performance comparison of our method against other state-
of-the-art approaches on the COCO dataset. The analysis shows that our proposed model outperforms
the others across all key performance metrics, with mAP of 74.7%, significantly higher than the other
models. Specifically, YOLOv4-tiny and OpenPose achieved mAPSs of 66.2% and 68.4% respectively,
while Faster R-CNN reached 70.6%. In comparison, our model also demonstrated exceptional
performance in AP*® and AP, achieving 87.42% and 82.12% respectively, indicating that our
method excels under both lenient and strict matching conditions. Moreover, in detecting medium-
sized objects APM and large objects AP-, our model achieved 72.12% and 76.22% respectively,
further showcasing its superiority in handling targets of varying sizes. Compared to other methods,
our model's advantages in APM and AP- are more pronounced, highlighting its robustness and
generalization capabilities in complex scenarios.

In addition to performance metrics, our model is also highly efficient in its complexity and the
cost of computation. Our model has much lower number of parameters (7.08M) than known
benchmark models, including DS-YOLOv8 (9.80M) and YOLOvV8-CGRNet (9.50M), and has
competitive floating-point operations (FLOPs) of 10.23B. This lower parameter volume makes our
model lighter and thus it can be implemented in resource constrained environments more easily —
without compromising on performance. The combined high accuracy and low computational
overhead of our model makes it a good candidate in those situations where both performance and
efficiency are paramount: it can achieve high accuracy levels at different levels of intersection-over-
union (loU) and object sizes, and at the same time provide good performance in terms of
computational efficiency. Our experimental results illustrate the high accuracy factor of our model
with low computational overhead level: our model is capable of producing high accuracy rates at
various levels of intersection-over-union (loU) and object sizes, with concurrent low level of
computational overhead. Such an improvement of performance-efficiency ratio is explained by
innovative network architecture and focused optimization policies of the model.
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5.2 Training Loss and PCKh@0.5 Performance
Loss during training PCKh@0.5 on the MPII validation set
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Figure 6. Training loss and PCKh@0.5 performance. The left plot shows the training loss on the
COCO (red) and MPII (black) datasets. The right plot illustrates the PCKh@0.5 on the MPII
validation set.

Figure 6 shows the performance of our model in the MPII and the COCO datasets in terms of
training loss and the PCKh@0.5. The loss curves are showing a unique downward trend indicating
successful development of learning in every epoch of training. First, the loss curves decrease at a high
rate and then gradually flatten off as the model converges. It is interesting to note that the loss on the
COCO dataset reduces more quickly than the loss on the MPII dataset — this could be due to
differences in the complexity of the data or the quality of annotation in the two datasets, where it
becomes possible to learn more efficiently on the COCO dataset. The curve in the MPII validation
set of PCKh0.5 performance demonstrates that improvement is still rapid at the initial stages of
training, and then, it levels off as the model reaches the optimal levels of performance. The last value
of PCKh reaches 0.5 and is stabilized above 90 percent, which means that the accuracy of keypoint
detection at the value of 0.5 loU is high. This accuracy is essential in tasks where it is necessary to
know the accurate position of the human in the positioning of the human body, like sports
rehabilitation where correct identification of the body joints is vital in tracking of patient progress
and rehabilitation body actions. All these findings confirm the strength of our model: it has low
training loss with high PCKh at 0.5 accuracy. These emphasize its efficiency in both general object
recognition (has been shown on COCO) and specific (human pose estimation) tasks (has been shown
on MPII).

5.3 Analysis of Ablation Experiment Results

Table 3. Comparison of PCK performance on the MPII dataset between our model and other state-
of-the-art methods.

Configuration COCO Dataset MPII Dataset
Avg.
AP0 APS0-9 APM AP PCKh@0.5 g
PCK
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Baseline 85.16 60.36 59.84 74.84
(YOLOVS only) ' ' ' '
+ HRNet (for 2D

o 86.5 61.3 62 77 90.2 80
Pose Estimation)
+ EMA + HRNet 86.8 61.5 62.3 77.2 91 80.8
+ DBB + HRNet 87 61.7 62.4 177.5 91.5 814
+ EMA + HRNet
+ DBB (Full 87.42 61.56 62.12 76.22 93.5 82
Model)

Table 3 presents the results of an ablation study conducted on the COCO and MPII datasets,
evaluating the impact of HRNet, EMA, and DBB components on the model's performance, with a
focus on enhancing human-robot interaction in sports rehabilitation. On the COCO dataset, the
baseline model (YOLOVS only) demonstrates solid object detection capabilities, achieving an AP
of 85.16 and an AP°*®® of 60.36, essential for tracking athletes and guiding rehabilitation exercises.
Integrating HRNet improves detection performance, with AP increasing to 86.50 and AP to
61.30, showing that HRNet enhances the model’s capacity for both object detection and 2D pose
estimation. Adding EMA further improves the model's precision and robustness, increasing AP*° and
APS% to 86.80 and 61.50, respectively. The inclusion of DBB boosts these metrics further, with
AP reaching 87.00, highlighting DBB's role in enhancing feature extraction. The full model,
combining EMA, HRNet, and DBB, achieves the best performance on the COCO dataset, with an
AP of 87.42 and an AP®® of 61.56, demonstrating the complementary strengths of these
components. On the MPII dataset, HRNet is crucial for accurate 2D pose estimation, achieving a
PCKh@0.5 of 90.2 and an Avg. PCK of 80.0. Adding EMA leads to slight improvements, with
PCKh@0.5 reaching 91.0. DBB further boosts performance, with PCKh@0.5 increasing to 91.5 and
Avg. PCK to 81.4. The full model achieves the highest performance, with a PCKh@0.5 of 93.5 and
an Avg. PCK of 82.0, demonstrating the enhanced accuracy and robustness needed for effective
human-robot interaction in sports rehabilitation.

5.4 Presentation of Results

82




Journal of Information and Computing (JIC), 2025, 3(4), 64-87.

Figure 7. Verification of HR-YOLOV8-DE in real-world scenarios.

The capacity to detect the keypoint of the HR-YOLOvV8-DE network is presented in figure 7 and
in various settings of sports-related scenarios such as skiing, running, and ball games. The detection
outcomes also reveal the strength and accuracy of the model to deal with complicated motion
challenges, which can allow a correct identification and location of several moving human objects.
Each located person is highlighted with red bounding boxes, and green and blue lines between the
keypoints are useful to test the ability of the model to reconstitute human poses across a range of
contextual situations. Both the variety of the tested scenarios and the fact that the HR-YOLOv8-DE
network was tested there substantiates the high level of applicability and, at the same time,
accentuates its possible value in the sports rehabilitation. In rehabilitation training, it is important that
the robot systems detect keypoint accurately in order to conduct real-time tracking and control of the
patient — this is because it makes the rehabilitation exercises accurate and safe and thus improves the
effectiveness of the rehabilitation process as a whole. These findings represent that the HR-YOLOV8-
DE network can be reliably used in various demanding settings, which makes it one of the tools that
can be utilized to further research human-robot interaction (HRI) in the context of sports rehabilitation.

6. Conclusions

This paper introduces the network HR-YOLOV8-DE that has significant potential in the further
development of human-robot interaction (HRI), especially in the area of sports rehabilitation. We
show by systematically designed experiments that the combination of the Diverse Branch Block
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(DBB), HRNet, and Energetic Multi-Scale Attention (EMA) mechanisms provides a synergistic
improvement of the system’s ability to accurately detect and analyze the complex human movements.
Namely, DBB reinforces multi-scale feature extraction, HRNet conserves high-resolution data to
estimate the pose with accuracy, and EMA re-prioritizes task-relevant features depending on the
changing conditions — all of which boost the network performance in motion analysis.

Empirical tests of COCO and MPII datasets prove that the HR-YOLOv8-DE network performs
better than various state-of-the-art models and provides better accuracy in human pose detection and
estimation. Its capability of recording the finer details of human movement is especially useful in
sports rehabilitation cases where the accuracy and dependability of motion analysis is essential in
determining the course of therapeutic treatment. Although these are positive findings, the HR-
YOLOV8-DE network has significant weaknesses. By integrating sophisticated components (DBB,
HRNet, EMA), it is more accurate, but also more complex to compute and therefore might not be
applicable to real-world applications in resource-limited settings (e.g., edge computing platforms to
run on-site rehabilitation). Also, although the network is efficient in controlled experimental
conditions, its effectiveness in actual rehabilitation conditions (where the variations in lighting and
patient movement patterns as well as in environmental distractions are much higher) should be
validated. This work generates several significant research directions that can be identified in the
future. The first one is the focus on making the HR-YOLOV8-DE network more resource-efficient on
a resource-constrained device: it can be considered to prune the network models, quantize weights,
or create lightweight variants of attention models, as this approach can help minimize the
computational cost without compromising the quality of detections. Second, it is crucial to establish
the effectiveness of the network in various, dynamic rehabilitation environments — this involves
adding more modalities to the network (e.g., force sensor data, electromyography (EMG) signals or
audio feedback) to enhance patient monitoring, which allows assessing the quality of movement and
muscle activity more comprehensively. Third, future researchers can take advantage of the real-time
analysis feature of the network to create adaptive rehabilitation plans: it is possible to monitor and
improve patient progress in real time, but the model can also adjust the parameters of exercises (e.g.,
intensity, range of motion) in real-time based on feedbacks, and thus, personalized therapeutic
interventions can be created.

To conclude, the HR-YOLOV8-DE network can be considered a major breakthrough in the field
of Al-assisted sports rehabilitation because it is capable of performing highly accurate real-time
movement tracking as a way of supporting HRI-related interventions. Although the issues concerning
the efficiency of computation and the ability to adjust to the real-life conditions are still present, the
model shows a great potential to enhance patient rehabilitation results. The future needs to optimize
the network so that it can be practically deployed into work to achieve a situation where it is able to
effectively address the needs of various clinical and rehabilitation settings.
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