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ABSTRACT 

This study proposes a multimodal information fusion approach for visual image retrieval. The 

model comprises three core components: a multimodal feature extraction module (MFEM), a 

multimodal feature fusion module (MFFM), and a unified feature retrieval module (UFRM) that 

process and integrate input data from different modalities. We design a Transformer-based 

multimodal fusion framework that combines image and text features through multi-head self-

attention and cross-modal attention mechanisms, enabling joint feature representations with enhanced 

expressiveness and precision. Unlike existing methods that rely on simple concatenation or weighted 

fusion, the proposed approach learns fine-grained inter-modal interactions, thereby improving 

retrieval accuracy. Experimental evaluations on three public benchmarks—FashionIQ, CIRR, and 

Fashion200K—show that the proposed method outperforms current state-of-the-art approaches 

across multiple metrics. The method exhibits robust performance in both accuracy and generalization 

across diverse retrieval scenarios, confirming its effectiveness for complex image retrieval tasks. 

 

Keywords: Multimodal information fusion, Visual image retrieval, Feature extraction, Transformer 

model, Retrieval performance optimization 

 

1. Introduction 

Visual image retrieval [1] has gained increasing significance in contemporary information 

systems, with applications spanning e-commerce [2], medical image analysis [3], video surveillance 

[4], and digital libraries [5]. Traditional retrieval approaches relying on single modalities—either 

images or text—prove insufficient for addressing the growing demands for precision and 

effectiveness. These methods encounter limitations when processing complex user queries that 

require relating and integrating multiple information sources, such as combining product images with 

textual descriptions of desired modifications. In scenarios where consumers specify style preferences 

alongside reference images, or clinicians integrate radiological scans with patient histories, single-

modality systems fail to capture user intent adequately, necessitating multimodal fusion approaches. 

Previous research has explored retrieval enhancement through low-level visual features, 

including color histograms, textures, and shape descriptors [6,7,8]. While effective for 

straightforward queries, these approaches struggle with tasks requiring advanced semantic 
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interpretation. With the advent of deep learning, CNN-based methods such as AlexNet, VGGNet, and 

ResNet have achieved substantial improvements in extracting high-level visual features. However, 

these methods remain single-modal and lack mechanisms for aligning visual data with textual 

descriptions, thereby limiting their capacity to capture the semantic richness of user queries. 

Subsequent work has explored multimodal fusion through concatenation or weighted 

aggregation of image and text features [9,10,11,12,21]. However, these strategies lack deep semantic 

interaction between modalities, resulting in shallow representations that inadequately capture fine [7] 

grained relationships. Recent approaches employing cross-modal attention mechanisms, generative 

adversarial networks (GANs) [8], and cross-modal contrastive learning have advanced the field but 

remain constrained by computational complexity, substantial data requirements, and limited 

sensitivity to subtle query variations. 

This study addresses these limitations by proposing a Transformer-based multimodal 

information fusion framework that integrates rich, fine-grained interactions between image and text 

modalities. The model leverages pre-trained CNNs for visual feature extraction and BERT for text 

encoding, with integration achieved through multi-head self-attention and cross-modal attention 

layers. Unlike previous approaches, our method ensures that elements from different modalities 

interact across multiple levels, yielding joint representations that better reflect semantic intent. 

Additionally, metric learning based on combined contrastive and triplet losses enhances retrieval 

precision and robustness. 

This study demonstrates that fine-grained multimodal fusion enabled by attention-based 

architecture achieves substantial improvements in retrieval performance. Through comprehensive 

experiments on FashionIQ, CIRR, and Fashion200K datasets, we show that the proposed approach 

consistently outperforms state-of-the-art models across accuracy, recall, and robust metrics, 

establishing its viability for real-world multimodal retrieval applications. 

2. Related Work 

2.1 Transformer-Based Multimodal Information Fusion Model 

Recent work has explored Transformer architecture for multimodal information fusion across 

various vision-language tasks. 

TransVG [9] introduces an end-to-end visual grounding framework that leverages the 

Transformer architecture to integrate image and text information without requiring region proposals. 

By directly aligning natural language descriptions with image regions, the model addresses complex 

vision-language tasks with enhanced spatial-semantic correspondence. ViLT [10] presents a vision-

language Transformer that eliminates the need for convolutional feature extractors or region 

supervision. Unlike conventional multimodal models that depend on convolutional neural networks 

for image encoding, ViLT processes visual and textual inputs directly within the Transformer 

framework, reducing computational overhead while accelerating inference and decreasing hardware 

requirements. The model achieves competitive performance across multiple multimodal benchmarks. 

Pixel-BERT [11] employs a deep multimodal Transformer for pixel-level alignment between 

visual and textual features. This pixel-wise matching mechanism enables fine-grained vision-
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language correspondence, yielding robust cross-modal generalization across diverse tasks and 

datasets. MDETR [12] presents a modulated detection framework for multimodal reasoning, utilizing 

Transformer-based modulation to align image and text representations. The model demonstrates 

effectiveness in visual grounding and object detection tasks by accurately matching textual 

descriptions with corresponding image regions. 

Despite the efficacy of Transformer-based architectures in multimodal fusion, their substantial 

computational requirements and dependence on large-scale training data constrain deployment in 

resource-limited settings. Additionally, current approaches exhibit limitations in capturing fine-

grained cross-modal interactions, indicating opportunities for further refinement. 

2.2 Pre-Trained Models and Contrastive Learning 

Recent advances in vision-language pre-training have explored various architectural and training 

strategies for cross-modal representation learning. 

Oscar [13] introduces object-semantic alignment during pre-training to enhance vision-language 

task performance. By incorporating object-level semantic information, the model establishes tighter 

correspondence between visual and linguistic features, yielding improvements in image captioning, 

visual question answering, and image retrieval benchmarks. CLIP [14] employs natural language 

supervision to learn transferable visual representations from large-scale image-text pairs. The model 

achieves cross-task generalization by learning visual concepts directly from textual descriptions, 

enabling zero-shot transfer across diverse vision-language applications. 

Zaid et al. [15] investigate vision-language model scaling through noisy text supervision, 

leveraging large-scale weakly-labeled data to learn broader feature representations while maintaining 

task efficiency. ImageBERT [16] performs cross-modal pre-training on weakly supervised image-

text datasets, integrating visual and textual features through joint representation learning. The weakly-

supervised pre-training strategy enables feature extraction from unlabeled or partially labeled data, 

improving downstream task performance. VisualBERT [17] establishes a streamlined vision-

language baseline through joint pre-training and task-specific fine-tuning, demonstrating competitive 

performance across multiple benchmarks. 

Despite these advances, real-time processing efficiency remains a challenge requiring further 

investigation. 

2.3 Based on Graph Neural Networks and Other Models 

Recent research has investigated graph neural networks and complementary architectures for 

multimodal information fusion in visual image retrieval through structured feature representation and 

alignment strategies. 

Li et al. [18] introduce a visual semantic reasoning framework for image-text matching that 

integrates visual and semantic information through a reasoning module designed to resolve complex 

semantic descriptions in cross-modal retrieval. Surbhi et al. [19] propose latent semantic scaling for 

image-text matching by aligning visual and textual representations within a shared latent space, 

enhancing visual search performance. Misra et al. [20] employ graph neural networks for multimodal 

retrieval by constructing graph-structured representations where image and textual data serve as 

nodes connected through cross-modal edges, enabling structured information fusion across modalities. 
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VSE++ [21] refines visual-semantic embedding by incorporating hard negative mining during 

training, which enhances discrimination between positive and negative samples in the embedding 

space to improve retrieval precision. T2VLAD [22] leverages Vector of Locally Aggregated 

Descriptors (VLAD) to align global video features with local textual features, strengthening cross-

modal retrieval robustness. 

However, the computational complexity of these graph-based and embedding approaches 

constrains scalability in large-scale and real-time deployment scenarios. Furthermore, modeling fine-

grained cross-modal interactions remains an open challenge. 

 

 

Figure 1. The overall structure of our network. The image and text modalities are extracted by the 

feature extractor and further fused by the multimodal fusion network to obtain our results. 

 

3. Method 

In this study, we proposed an innovative visual image retrieval method based on multimodal 

information fusion. 

3.1 Multimodal Feature Extraction Module 

We use the pre-trained ResNet-50 [24] model to extract image features. ResNet-50 is a deep 

convolutional neural network that solves the gradient vanishing problem. 

Given an input image I, we represent it as a pixel matrix 𝐼 ∈ 𝑅𝐻×𝑊×𝐶. After processing by the 

convolutional layers, pooling layers, and fully connected layers of the ResNet-50 model, we obtain a 

high-level feature representation of the image 𝐹𝐼 ∈ 𝑅𝑑 ,, where d represents the feature dimension. 

𝐹𝐼 = 𝑅𝑒𝑠𝑁𝑒𝑡 − 50(𝐼)                       Formular 1 

Specifically, ResNet-50 contains multiple convolutional layers, pooling layers, and residual 

blocks. Its core calculation process can be expressed as: 

𝐹𝑙+1 = 𝐹𝑙 + 𝐹(𝐹𝑙, 𝑊𝑙)                       Formular 2 

Where 𝐹𝑙 is the feature representation of the lth layer, F represents the feature transformation 

after the convolution operation, and 𝑊𝑙 is the weight matrix of the lth layer.  

Through this residual learning framework, we can extract the high-level feature representation 

of the image. In addition, to further improve the expressiveness of image features, we also introduced 
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global average pooling and batch normalization [25] techniques when extracting features. These 

techniques help reduce overfitting and accelerate model convergence, thereby obtaining a more robust 

feature representation.  

The role of global average pooling is to average all pixel values. The formula is as follows: 

𝐹𝐺𝐴𝑃 =
1

𝐻×𝑊
∑𝐻
𝑖=1  ∑𝑊

𝑗=1  𝐹𝑖,𝑗                    Formular 3 

The role of batch normalization is to normalize the input of each layer so that its mean is 0 and 

its variance is 1. The formula is as follows: 

𝐹𝐵𝑁 =
𝐹−𝜇

√𝜎2+𝜖
                           Formular 4 

Where μ and σ represent the mean and standard deviation of the features of the current batch, 

respectively, and ϵ is a small constant used to avoid the denominator being zero. 

Text Feature Extraction: We use the pre-trained BERT model. BERT is a bidirectional 

Transformer [26] model that captures contextual information through large-scale text pre-training. 

Given the input text T, we represent it as a word sequence {t1, t2, …, tn} where n represents the  

 

Figure 2. The structure diagram of our image and text modality fusion mechanism. 
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After processing the encoding layer of the BERT model, we obtain a high-level feature 

representation of the text 𝐹𝑇 ∈ 𝑅𝑛×𝑑, where d represents the feature dimension. 

𝐹𝑇 = 𝐵𝐸𝑅𝑇(𝑇)                          Formular 5 

The BERT model processes input text through a multi-layer Transformer encoder. Each encoder 

layer contains a multi-head self-attention mechanism and a feedforward neural network. The 

calculation process of the self-attention mechanism is as follows: 

𝑄 = 𝑋𝑊𝑄, 𝐾 = 𝑋𝑊𝐾, 𝑉 = 𝑋𝑊𝑉                   Formular 6 

𝐴 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
)                         Formular 7 

𝑂 = 𝐴𝑉                              Formular 8 

Where X represents the input features, 𝑊𝑄, 𝑊𝐾, and 𝑊𝑉 are the weight matrices for the query, 

key, and value, respectively, and 𝑑𝑘 represents the dimension of the key. Through a multi-layer self-

attention mechanism, BERT is able to capture the complex relationships between words in a text, 

thereby generating high-quality text feature representations. 

Subword tokenization specifically breaks words into smaller subword units, improving the 

model's ability to handle unknown vocabulary. For example, the word "unhappiness" can be split into 

"un" and "happiness." Positional encoding incorporates positional information. The formula is as 

follows: 

𝑃𝐸(𝑝𝑜𝑠, 2𝑖) = 𝑠𝑖𝑛⁡(
𝑝𝑜𝑠

100002𝑖/𝑑
)                   Formular 9 

𝑃𝐸(𝑝𝑜𝑠, 2𝑖 + 1) = 𝑐𝑜𝑠⁡(
𝑝𝑜𝑠

100002𝑖/𝑑
)                Formular 10 

Among them, pos represents the position, i represents the index of the feature dimension, and d 

represents the feature dimension. 

3.2 Multimodal Feature Fusion Module 

We employ a Transformer-based multimodal fusion architecture, implementing feature fusion 

through self-attention and cross-modal attention mechanisms. 

Given the input features, we first compute the query, key, and value matrices Q, K, and V: Next, 

we compute the attention weight matrix A: 

𝐴 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
)                     Formular 11 

Where 𝑑𝑘 is the dimension of the key. Finally, calculate the self-attention output: 

𝑂⁡ = ⁡𝐴𝑉                          Formular 12 

The self-attention mechanism calculates the similarity between input features, thereby weighting 

and summing important information, achieving information fusion and interaction within features. 

In our architecture, each multi-head self-attention layer includes multiple independent attention 

heads, each of which independently calculates attention weights and output features. These are then 

concatenated and integrated through a linear transformation layer: 

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, ℎ𝑒𝑎𝑑2, … , ℎ𝑒𝑎𝑑ℎ)𝑊𝑂        Formular 13 

Where h represents the number of attention heads, and 𝑊𝑂 is the weight matrix used for the 

linear transformation. 

The purpose of the cross-modal attention mechanism is to facilitate information exchange and 
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fusion between features from different modalities. Given image features 𝐹𝐼 and text features 𝐹𝑇: 

𝑄𝐼 = 𝐹𝐼𝑊𝑄𝐼 , 𝐾𝑇 = 𝐹𝑇𝑊𝐾𝑇 , 𝑉𝑇 = 𝐹𝑇𝑊𝑉𝑇               Formular 14 

Where 𝑊𝑉𝑇 is the weight matrices for text key and value respectively. Next, calculate the cross-

modal attention weight matrix: 

𝐴𝐼𝑇 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐼𝐾𝑇

𝑇

√𝑑𝑘
)                     Formular 15 

Finally, the cross-modal attention output is calculated: 

𝑂𝐼𝑇 = 𝐴𝐼𝑇𝑉𝑇                         Formular 16 

The cross-modal attention mechanism computes similar scores between image and text feature 

representations, weighting and integrating textual information into visual features to construct joint 

embeddings. 

Textual descriptions encode semantic details that may be ambiguous in visual data, while images 

provide spatial and structural information absent from text alone. The integration of these modality-

specific representations yields joint features with enhanced discriminative capacity. 

Multi-Level Fusion: Feature fusion is extended through multi-level attention mechanisms within 

the Transformer architecture, enabling hierarchical interaction between visual and textual 

representations. Multi-head self-attention operates within each modality to capture intra-modal 

dependencies, while multi-head cross-modal attention facilitates inter-modal alignment across 

multiple projection subspaces, extracting features at varying semantic granularities. 

Given image features 𝐹𝐼 and text features 𝐹𝑇, we first fuse the features within each modality: 

𝑂𝐼 = 𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄𝐼 , 𝐾𝐼 , 𝑉𝐼), 𝑂𝑇 = 𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄𝑇, 𝐾𝑇 , 𝑉𝑇)           Formula 17 

Next, the features is fused through the multi-head cross-modal attention mechanism: 

𝑂𝐼𝑇 = 𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄𝐼 , 𝐾𝑇 , 𝑉𝑇)                   Formula 18 

Finally, we concatenate and transform the fused features to generate a joint feature 

representation: 

𝐹𝑓𝑢𝑠𝑒𝑑 = 𝐶𝑜𝑛𝑐𝑎𝑡(𝑂𝐼 , 𝑂𝐼𝑇)                    Formula 19 

𝐹𝑓𝑖𝑛𝑎𝑙 = 𝐹𝑓𝑢𝑠𝑒𝑑𝑊𝑓𝑖𝑛𝑎𝑙                      Formula 20 

𝑊𝑓𝑖𝑛𝑎𝑙is the weight matrix used to transform the joint feature representation. 

Through a multi-level attention mechanism and cross-modal feature fusion, we are able to 

generate high-quality joint feature representations, providing a solid foundation for subsequent 

retrieval. 

3.3 Joint Feature Retrieval Module 

We employ multiple similarity metrics and efficient retrieval techniques to ensure accurate and 

fast retrieval on large datasets. 

Given the fused joint feature representation Ffinal, we first normalize it: 

𝐹𝑛𝑜𝑟𝑚 =
𝐹𝑓𝑖𝑛𝑎𝑙

∥𝐹𝑓𝑖𝑛𝑎𝑙∥
                          Formula 21 

Next, given the query image features Fquery and the database image features Fdb, we calculate 

the cosine similarity between them: 

𝑠 = 𝑐𝑜𝑠⁡(𝐹𝑞𝑢𝑒𝑟𝑦 , 𝐹𝑑𝑏) =
𝐹𝑞𝑢𝑒𝑟𝑦⋅𝐹𝑑𝑏

∥𝐹𝑞𝑢𝑒𝑟𝑦∥∥𝐹𝑑𝑏∥
                 Formula 22 
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By calculating the cosine similarity between a query image and all images in the database, we 

can find the images most similar to the query image. 

Nearest Neighbor Search: To improve retrieval efficiency, we employ a nearest neighbor search 

algorithm. Specifically, we utilize techniques such as a k-d tree (k-dimensional tree) and LSH 

(Locality-Sensitive Hashing) for fast nearest neighbor searches. 

Given the query image feature Fquery and the database image feature set , we first build a k-d 

tree or LSH index structure, and then perform a fast nearest neighbor search through the index 

structure: 

{𝐹𝑛𝑛1 , 𝐹𝑛𝑛2 , … , 𝐹𝑛𝑛𝑘} = 𝑁𝑒𝑎𝑟𝑒𝑠𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝐹𝑞𝑢𝑒𝑟𝑦, 𝑘)         Formula 23 

Where k is the number of nearest neighbors. 

Comprehensive Similarity Calculation: To further improve search accuracy, we combine 

multiple similarity metrics. In addition to cosine similarity, we can also combine other similarity 

metrics such as Euclidean distance and Hamming distance: 

𝑑𝑒𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 =∥ 𝐹𝑞𝑢𝑒𝑟𝑦 − 𝐹𝑑𝑏 ∥2                  Formula 24 

𝑑ℎ𝑎𝑚𝑚𝑖𝑛𝑔 = ∑𝑑
𝑖=1   |𝐹𝑞𝑢𝑒𝑟𝑦𝑖 − 𝐹𝑑𝑏𝑖|                 Formula 25 

Finally, we use the weighted summation method to combine the results of multiple similarity 

measurement methods to obtain a more accurate similarity evaluation: 

𝑠𝑓𝑖𝑛𝑎𝑙 = 𝜆𝑐𝑜𝑠𝑖𝑛𝑒⋯𝑐𝑜𝑠𝑖𝑛𝑒 − 𝜆𝑒𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 ⋅ 𝑑𝑒𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 − 𝜆ℎ𝑎𝑚𝑚𝑖𝑛𝑔 ⋅ 𝑑ℎ𝑎𝑚𝑚𝑖𝑛𝑔   Formula 26 

4. Experiment 

4.1 Experimental Setup 

4.1.1 FashionIQ dataset 

FashionIQ constitutes a benchmark for evaluating composed image retrieval models that utilize 

natural language descriptions. The dataset comprises fashion images across multiple clothing 

categories paired with human-annotated relative captions, providing infrastructure for multimodal 

fusion research. Visual content spans diverse garment styles, designs, colors, and patterns, ensuring 

comprehensive representation of fashion-domain characteristics. 

Human annotators supply textual descriptions specifying garment attributes including color, 

style, pattern, and material composition. These annotations exhibit semantic diversity necessary for 

models to learn nuanced linguistic variations. The dataset structure employs image-text-image triplets 

where a reference image, modification text, and target image form the training and evaluation 

framework. This compositional format enables models to learn correspondence between visual 

features and linguistic modifications. 

FashionIQ's annotation quality and standardized evaluation protocols establish its utility for 

advancing composed retrieval architectures and multimodal alignment techniques. 

4.1.2 CIRR dataset 

The Composed Image Retrieval on Real-world images (CIRR) dataset extends compositional 

retrieval to general visual domains beyond fashion. Each query comprises a reference image and 

modification instruction, simulating real-world search scenarios such as "find objects similar to this 

reference but with different colors". 



Journal of Intelligence Technology and Innovation (JITI), 2025, 3(3), 53-69. 

 

61 

 

Image content encompasses diverse domains including human subjects, wildlife, landscapes, 

urban environments, and interior scenes. Query formulations capture fine-grained semantic variations 

requiring models to parse complex linguistic instructions and identify subtle visual differences. 

Human-generated modification texts describe both simple attribute transformations (color, shape) and 

complex scene alterations or object interactions. 

CIRR's compositional query structure provides data infrastructure for personalized retrieval 

systems requiring interpretation of relative rather than absolute descriptions. 

4.1.3 Fashion200K dataset 

Fashion200K aggregates over 200,000 garment images with detailed textual metadata across 

categories including dresses, trousers, tops, outerwear, and footwear. Each image receives multiple 

attribute labels and human-written descriptions specifying color, style, pattern, and material 

properties. This annotation scheme yields rich visual-linguistic feature sets supporting multimodal 

retrieval research. 

The dataset facilitates development of retrieval architectures that process natural language 

queries and supports personalized recommendation systems interpreting user preferences expressed 

through textual descriptions. Fashion200K serves as infrastructure for investigating multimodal 

fusion techniques in fashion-domain applications. 

4.1.4 Evaluation protocols 

FashionIQ Evaluation: The dataset employs dual evaluation protocols using the original 

candidate pool and the VAL-refined candidate set. The VAL method eliminates redundant images 

and unifies reference-target pairs, reducing candidate pool size and computational overhead while 

maintaining evaluation validity. 

CIRR Evaluation: Beyond standard R@K metrics, CIRR introduces RSubset@K, which 

evaluates retrieval performance on subsets containing visually similar negative samples. This metric 

assesses model capacity to discriminate fine-grained differences under challenging conditions. 

These complementary metrics provide standardized frameworks for comparing model 

architectures and quantifying performance across retrieval scenarios. 

4.1.5 Implementation configuration 

Visual Encoding: ResNet-50 extracts hierarchical image representations, with features from layers 

4, 10, and 12 providing multi-scale visual information. Residual connections within each block 

preserve gradient flow during backpropagation while capturing high-level semantic features. 

Text Encoding: BERT-base-uncased generates contextual text embeddings through its bidirectional 

Transformer architecture, encoding modification instructions as token sequences. 

Multimodal Fusion: A cross-modal Transformer comprising 4 layers with 8-head attention 

mechanisms fuses visual and textual representations into unified embeddings. 

Training Regime: Optimization employs AdamW with initial learning rate 3×10⁻⁴ across 150 epochs. 

Learning rate decay to 0.1× occurs at epoch 75 to stabilize convergence. 

Retrieval Mechanism: The Unified Feature Retrieval Module (UFRM) computes cosine similarity 

between query and candidate embeddings. Incorporating multiple distance metrics (Euclidean, 

Hamming) enhances retrieval robustness. 
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This configuration enables efficient processing of compositional queries through effective 

visual-linguistic feature integration, yielding improved retrieval accuracy across evaluation 

benchmarks. 

Table 1. Comparison with State-of-the-Art Methods on FashionIQ. 

Methods (a)VAL Evaluation Protocol (b)Original Evaluation 

Protocol 

 

 Dress Shirt Tops&Tees Overall  

 R@1

0 

R@5

0 

R@1

0 

R@5

0 

R@1

0 

R@5

0 

R@1

0 

R@5

0 

Mea

n 

Image+TextConcatenati

on 

10.52 28.98 13.44 34.60 11.36 30.42 11.77 31.33 21.5

5 

TIRG[27] 14.89 34.66 18.26 37.89 19.08 39.62 17.40 37.39 27.4

0 

MAAF[28] 23.80 48.60 21.30 44.20 27.90 53.60 24.30 48.80 36.5

5 

ComposeAEw/BERT[2

9] 

14.03 35.10 13.88 34.59 15.80 39.26 19.89 36.31 25.4

4 

CIRPLANT[6] 17.45 40.41 17.53 38.81 21.64 45.38 18.87 41.53 30.2

0 

VAL[30] 22.53 44.00 22.38 44.15 27.53 51.68 24.15 46.61 35.4

0 

JPM[31] 21.38 45.15 22.81 45.18 27.78 51.70 23.99 47.34 35.6

7 

HFF[32] 26.20 51.20 22.40 46.01 29.70 56.40 26.10 51.20 38.6

5 

CosMo[33] 25.64 50.30 24.90 49.18 29.21 57.46 26.58 52.31 39.4

5 

SACw/BERT[34] 26.52 51.01 28.02 51.86 32.70 61.23 29.08 54.70 41.8

9 

FashionVLP[35] 32.42 60.29 31.89 58.44 38.51 68.79 34.27 62.51 48.3

9 

Ours 33.86 61.08 35.57 62.19 42.07 69.30 37.17 64.19 50.6

8 

Image+TextConcatenati

on 

14.92 34.95 12.71 30.08 14.28 34.73 13.92 33.25 23.5

9 

TIRG 14.13 34.61 13.10 30.91 14.79 34.37 14.01 33.30 23.6

6 

CosMo 21.39 44.45 16.90 37.49 21.32 46.02 19.87 42.62 31.2

5 

ARTEMIS 25.68 51.05 21.57 44.13 28.59 55.06 25.28 50.08 37.6



Journal of Intelligence Technology and Innovation (JITI), 2025, 3(3), 53-69. 

 

63 

 

8 

FashionVLP 26.77 53.20 22.67 46.22 28.51 57.47 25.98 52.30 39.1

4 

Ours 28.85 55.38 25.64 50.22 33.61 60.48 29.37 55.36 42.3

6 

 

Table 2. Comparison with State-of-the-Art Methods on CIRR. 

Methods 
R@K RSubset@K 

(R@5+RSubset@1

)/2 

 K=1 K=5 K=1

0 

K=5

0 

K=1 K=2 K=3  

Image+TextConcatenat

ion 

12.4

4 

40.2

4 

57.5

2 

87.2

9 

23.7

4 

45.1

2 

65.5

0 

31.99 

MAAF 10.3

1 

33.0

3 

48.3

0 

80.0

6 

21.0

5 

41.8

1 

61.6

0 

27.04 

MAAFw/BERT 10.1

2 

33.1

0 

48.0

1 

80.5

7 

22.0

4 

42.4

1 

62.1

4 

27.57 

TIRG 14.6

1 

48.3

7 

64.0

8 

90.0

3 

22.6

7 

44.9

7 

65.1

4 

35.52 

ARTEMIS 16.9

6 

46.1

0 

61.3

1 

87.7

3 

39.9

9 

62.2

0 

75.6

7 

43.05 

CIRPLANT 19.5

5 

52.5

5 

68.3

9 

92.3

8 

39.2

0 

63.0

3 

79.4

9 

45.88 

Ours 25.7

6 

61.7

6 

75.9

0 

95.1

3 

51.8

6 

76.2

6 

89.2

5 

56.81 

 

Table 3. Comparison with state-of-the-art methods on Fashion200K. 

Methods Fashion200K 

 R@10 R@50 Mean 

TIRG 42.5 63.8 53.2 

JGAN[36] 45.3 65.7 55.5 

LBF[37] 48.3 68.5 58.4 

JPM 46.5 66.6 56.6 

DCNET[38] 46.9 67.6 57.3 

VAL 49.0 68.8 58.9 

HFF 49.4 69.4 59.4 

CosMo 50.4 69.3 59.9 

DATIR[39] 48.8 71.6 60.2 

FashionVLP 49.9 70.5 60.2 
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ARTEMIS 51.1 70.5 60.8 

Ours 52.2 72.2 62.2 

 

4.2 Comparison Results with SOTA Methods 

We benchmarked the proposed method against state-of-the-art approaches across three datasets, 

with results presented in Tables 1, 2, and 3. 

4.2.1 FashionIQ dataset performance 

VAL Protocol: The method achieved R@10 scores of 33.86, 35.57, and 42.07 for Dress, Shirt, and 

Tops&Tees categories, respectively, with corresponding R@50 scores of 61.08, 62.19, and 

69.30 (Table 1). Average metrics reached R@10=37.17, R@50=64.19, and mean 

precision=50.68. Comparative baselines include FashionVLP (R@10: 32.42/31.89/38.51; 

R@50: 60.29/58.44/68.79; mean precision: 48.39) and SAC w/ BERT (R@10: 

26.52/28.02/32.70; R@50: 51.01/51.86/61.23; mean precision: 41.89) [54,55,56]. 

Original Protocol: Performance under the standard evaluation yielded R@10 scores of 28.85, 25.64, 

and 33.61 across categories, with R@50 scores of 55.38, 50.22, and 60.48 (average 

R@10=29.37, R@50=55.36, mean precision=42.36). Baselines include FashionVLP (R@10: 

26.77/22.67/28.51; R@50: 53.20/46.22/57.47; mean precision: 39.14) and ARTEMIS (R@10: 

25.68/21.57/25.28; R@50: 51.05/44.13/55.06; mean precision: 37.68). 

4.2.2 CIRR dataset performance 

R@K Metrics: The method obtained R@K scores of 25.76, 61.76, 75.90, and 95.13 for 

K={1,5,10,50}, respectively (Table 2). Comparative results include CIRPLANT 

(19.55/52.55/68.39/92.38) and ARTEMIS (16.96/46.10/61.31/87.73). 

RSubset@K Metrics: Performance on visually similar negative samples yielded RSubset@K scores 

of 51.86, 76.26, and 89.25 for K={1,2,3}, compared to CIRPLANT (39.20/63.03/79.49) and 

ARTEMIS (39.99/62.20/75.67). The composite metric (R@5+RSubset@1)/2 reached 56.81 

versus 45.88 (CIRPLANT) and 43.05 (ARTEMIS). 

4.2.3 Fashion200K dataset performance 

The method achieved R@10=52.2 and R@50=72.2, with average performance 

(R@10+R@50)/2=62.2 (Table 3). Comparative baselines include ARTEMIS (R@10=51.1, 

R@50=70.5, average=60.8), FashionVLP (R@10=49.9, R@50=70.5, average=60.2), CoSMo 

(R@10=50.4, average=59.9), DATIR (R@50=71.6), HFF (R@50=69.4), LBF (R@10=48.3), and 

TIRG (average=53.2). 

These results demonstrate consistent improvements across evaluation protocols and datasets, 

particularly in fine-grained retrieval tasks requiring discrimination among visually similar candidates. 
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Figure 3. Qualitative results on the FashionIQ, CIRR, and Fashion200K datasets. 

 

Figure 3 presents qualitative retrieval results across the three datasets. Each image group 

displays the combined query (reference image + modification text) on the left, with the top eight 

retrieval candidates ranked from left to right. Green boxes denote ground-truth targets. 

FashionIQ Dataset: The model retrieved target images conforming to specific attribute 

modifications (Figure 5a). For the query "dress with a pink hue and spaghetti straps," retrieved 

candidates matched both color and structural specifications. Performance indicates successful 

encoding of fine-grained visual attributes from natural language descriptions. 

CIRR Dataset: Retrieval on open-domain images with human-generated modifications revealed both 

capabilities and limitations (Figure 5b). For the query "There are more animals on the thorny 

ground," top-ranked candidates contained the specified elements. However, the first two 

retrieved images exhibited high visual similarity in lighting and subject composition, with 

incorrect ranking attributable to insufficient discrimination of fine-grained spatial relationships 

between subjects and objects (person-phone interaction). 

Fashion200K Dataset: The model processed queries describing attribute transformations using 

domain-specific grammatical structures (Figure 5c). For "replace geometric patterns with paisley 

patterns," retrieved images displayed the target pattern while maintaining style consistency with 

the reference image, indicating effective processing of attribute-level modifications. 

Across datasets, the method retrieved candidates matching query specifications, with 

performance varying by query complexity and the granularity of required visual discrimination. 

 

 

Figure 4. Performance variation with different number of layers L and heads H in the cross-model 
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transformer. 

 

Figure 5. Performance variation with different number of spatial regions X in the local alignment 

module. 

4.3 Ablation Experiments 

4.3.1 Ablation study: component analysis 

Table 1 and Table 2 presents ablation results comparing module combinations on FashionIQ and 

CIRR datasets. The full model (Baseline + MFFM + UFRM) achieved optimal performance across 

both benchmarks. 

FashionIQ Dataset: The complete architecture yielded R@10=37.17, R@50=64.19, and mean 

precision=50.68. Alternative configurations produced lower scores: Baseline + MFFM + LA 

(R@10=36.03, R@50=62.99, mean=49.51), Baseline + MFFM + MFEM (R@10=35.81, 

R@50=61.71, mean=48.76), and Baseline + MFEM (mean=48.76). 

CIRR Dataset: The composite metric (R@5+RSubset@1)/2 reached 56.81 for the full model, 

compared to 55.33 (Baseline + MFFM + LA), 54.92 (Baseline + MFFM + MFEM), and 51.78 

(Baseline + MFEM). 

Performance gains of 1.17 points (FashionIQ mean precision) and 1.48 points (CIRR composite 

metric) over the strongest baselines indicate complementary contributions from the three modules in 

capturing cross-modal correspondences. 

4.3.2 Hyperparameter sensitivity analysis 

Transformer Layers (Figure 4a): Retrieval performance increased with layer depth up to L=4 

(R@10=37.17, R@50=64.19), then plateaued or declined at L=6 and L=8. The saturation suggests 

sufficient representational capacity at four layers, with deeper architectures potentially introducing 

overfitting or computational overhead without commensurate accuracy improvements. 

Attention Heads (Figure 4b): Increasing head count from H=1 to H=8 improved metrics (R@10: 

33.05→37.17; R@50: 59.86→64.19). Performance degraded at H=16 and H=32, indicating that 

eight heads optimally balance multi-perspective semantic modeling against parameter efficiency. 

Excessive heads may fragment attention without additional discriminative benefit. 

Regional Features (Figures 5a, 5b): R@10 and R@50 peaked at eight regions (37.17 and 64.19, 

respectively), with lower scores at N={0,4,12}. This configuration balances localized feature 

extraction with computational tractability; fewer regions provide insufficient spatial granularity, 
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while excess regions introduce feature redundancy without enhancing discrimination. 

5. Conclusions 

Existing multimodal fusion approaches concatenate or weight image and text features 

[9,10,11,12,21], producing shallow representations that fail to capture fine-grained cross-modal 

relationships due to limited semantic interaction between modalities [7]. Advanced methods 

employing cross-modal attention mechanisms, generative adversarial networks (GANs) [8], and 

contrastive learning frameworks exhibit three primary limitations: high computational complexity, 

substantial training data requirements, and insufficient sensitivity to subtle query variations. 

This paper addresses these limitations through a Transformer-based multimodal fusion 

architecture that enables deep semantic interaction between visual and textual modalities. The 

framework employs pre-trained CNNs for image feature extraction and BERT for text encoding, 

integrating these representations through cascaded multi-head self-attention and cross-modal 

attention layers. Unlike prior methods, this architecture facilitates hierarchical cross-modal 

interactions, yielding joint representations that more accurately encode semantic correspondences. 

Metric learning with combined contrastive and triplet losses further enhances retrieval 

discriminability. 

This study demonstrates that attention-driven fine-grained multimodal fusion substantially 

improves retrieval performance. Extensive experiments on FashionIQ, CIRR, and Fashion200K 

benchmarks show consistent superiority over state-of-the-art methods across accuracy, recall, and 

robustness metrics, establishing practical viability for real-world multimodal retrieval applications. 

 

Acknowledgements 

This article received no financial or funding support. 

 

Conflicts of Interest 

The author confirms that there are no conflicts of interest. 

 

References  

[1] Absetan, A. and Fathi, Integration of deep learned and handcrafted features for image retargeting quality 

assessment. Cybernetics and Systems, 2023, 54, 673–696. 

[2] Jain, V., Malviya, B. and Arya, S. An overview of electronic commerce (e-commerce). Journal of Contemporary 

Issues in Business and Government, 2021, 27, 665–670. 

[3] Ning, X., Tian, W., He, F., Bai, X., Sun, L. and Li, W. Hyper-sausage coverage function neuron model and learning 

algorithm for image classification. Pattern Recognition, 2023, 136, 109216. 

[4] Rezaee, K., Rezakhani, S.M., Khosravi, M.R., Moghimi, M.K. and Fathi, M. A survey on deep learning-based real-

time crowd anomaly detection for secure distributed video surveillance. Personal and Ubiquitous Computing, 2024, 

28, 135–151. 

[5] Shen, Y., Zhu, H. and Qiao, Z. Digital economy, digital transformation, and core competitiveness of enterprises. 



Journal of Intelligence Technology and Innovation (JITI), 2025, 3(3), 53-69. 

 

68 

 

Journal of Xi’an University of Finance and Economics, 2024, 37, 72–84. 

[6] Li, Y., Ma, J. and Zhang, Y. Image retrieval from remote sensing big data: A survey. Information Fusion, 2021, 67, 

94–115. 

[7] Simonyan, K. and Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 

preprint arXiv:1409.1556, 2014. 

[8] He, K., Zhang, X., Ren, S. and Sun, J. Deep residual learning for image recognition. In: Proceedings of the IEEE 

Conference on Computer Vision and Pattern Recognition, 2016, 770–778. 

[9] Jiang, Y., Li, W., Hossain, M.S., Chen, M., Alelaiwi, A. and AlHammadi, M. A snapshot research and 

implementation of multimodal information fusion for data-driven emotion recognition. Information Fusion, 2020, 

53, 209–221. 

[10] Wu, H., Gao, Y., Guo, X., Al-Halah, Z., Rennie, S., Grauman, K. and Feris, R. Fashion IQ: A new dataset towards 

retrieving images by natural language feedback. In: Proceedings of the IEEE/CVF Conference on Computer Vision 

and Pattern Recognition, 2021, 11307–11317. 

[11] Han, X., Wu, Z., Huang, P.X., Zhang, X., Zhu, M., Li, Y., Zhao, Y. and Davis, L.S. Automatic spatially-aware 

fashion concept discovery. In: Proceedings of the IEEE International Conference on Computer Vision, 2017, 1463–

1471. 

[12] Kim, W., Son, B. and Kim, I. ViLT: Vision-and-language transformer without convolution or region supervision. 

In: International Conference on Machine Learning, PMLR, 2021, 5583–5594. 

[13] Huang, Z., Zeng, Z., Liu, B., Fu, D. and Fu, J. Pixel-BERT: Aligning image pixels with text by deep multi-modal 

transformers. arXiv preprint arXiv:2004.00849, 2020. 

[14] Li, G., Duan, N., Fang, Y., Gong, M. and Jiang, D. Unicoder-VL: A universal encoder for vision and language by 

cross-modal pre-training. In: Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 11336–11344. 

[15] Kamath, A., Singh, M., LeCun, Y., Synnaeve, G., Misra, I. and Carion, N. Meter-modulated detection for end-to-

end multi-modal understanding. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, 

2021, 1780–1790. 

[16] Li, X., Yin, X., Li, C., Zhang, P., Hu, X., Zhang, L., Wang, L., Hu, H., Dong, L., Wei, F. and Zhou, M. OSCAR: 

Object-semantics aligned pre-training for vision-language tasks. In: Computer Vision–ECCV 2020: 16th European 

Conference, Glasgow, UK, 2020, 121–137. 

[17] Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell, A., Mishkin, P. and 

Clark, J. CLIP: Learning transferable visual models from natural language supervision. arXiv preprint 

arXiv:2103.00020, 2021. 

[18] Khan, Z., Vijay Kumar, B., Yu, X., Schulter, S., Chandraker, M. and Fu, Y. Single-stream multi-level alignment 

for vision-language pretraining. In: European Conference on Computer Vision, 2022, 735–751. 

[19] Qi, L., Su, J., Song, J., Cui, E., Bharti, T. and Sacheti, A. ImageBERT: Crossmodal pre-training with large-scale 

weak-supervised image-text data. arXiv preprint arXiv:2001.07966, 2020. 

[20] Li, L.H., Yatskar, M., Yin, D., Hsieh, C.-J. and Chang, K.-W. VisualBERT: A simple and performant baseline for 

vision and language. arXiv preprint arXiv:1908.03557, 2019. 

[21] Li, K., Zhang, Y., Li, K., Li, Y. and Fu, Y. Visual semantic reasoning for image-text matching. In: Proceedings of 

the IEEE/CVF International Conference on Computer Vision, 2019, 4654–4662. 

[22] Aggarwal, S., Radhakrishnan, V.B. and Chakraborty, A. Text-based person search via attribute-aided matching. In: 

Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2020, 2617–2625. 



Journal of Intelligence Technology and Innovation (JITI), 2025, 3(3), 53-69. 

 

69 

 

[23] Misraa, K., Kale, A., Aggarwal, P. and Aminian, A. Multi-modal retrieval using graph neural networks. arXiv 

preprint arXiv:2010.01666, 2020. 

[24] Faghri, F., Fleet, D.J., Kiros, J.R. and Fidler, S. VSE++: Improving visual-semantic embeddings with hard 

negatives. arXiv preprint arXiv:1707.05612, 2017. 

[25] Wang, X., Zhu, L. and Yang, Y. T2VLAD: Global-local sequence alignment for text-video retrieval. In: 

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, 5079–5088. 

[26] Devlin, J., Chang, M.-W., Lee, K. and Toutanova, K. BERT: Pre-training of deep bidirectional transformers for 

language understanding. arXiv preprint arXiv:1810.04805, 2018. 

[27] Dodds, E., Culpepper, J., Herdade, S., Zhang, Y. and Boakye, K. Modality-agnostic attention fusion for visual 

search with text feedback. arXiv preprint arXiv:2007.00145, 2020. 

[28] Anwaar, M.U., Labintcev, E. and Kleinsteuber, M. Compositional learning of image-text query for image retrieval. 

In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2021, 1140–1149. 

[29] Chen, Y., Gong, S. and Bazzani, L. Image search with text feedback by visiolinguistic attention learning. In: 

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, 3001–3011. 

[30] Yang, Y., Wang, M. and Zhou, W. Cross-modal joint prediction and alignment for composed query image retrieval. 

In: Proceedings of the 29th ACM International Conference on Multimedia, 2021, 3303–3311. 

[31] Zhang, S., Wei, H. and Pang, Y. Heterogeneous feature fusion and cross-modal alignment for composed image 

retrieval. In: Proceedings of the 29th ACM International Conference on Multimedia, 2021, 5353–5362. 

[32] Lee, S., Kim, D. and Han, B. CosMo: Content-style modulation for image retrieval with text feedback. In: 

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, 802–812. 

[33] Jandial, S., Badjatiya, P., Chawla, P., Chopra, A., Sarkar, M. and Krishnamurthy, B. SAC: Semantic attention 

composition for text-conditioned image retrieval. In: Proceedings of the IEEE/CVF Winter Conference on 

Applications of Computer Vision, 2022, 4021–4030. 

[34] Goenka, S., Zheng, Z., Jaiswal, A., Chada, R., Wu, Y., Hedau, V. and Natarajan, P. FashionVLP: Vision language 

transformer for fashion retrieval with feedback. In: Proceedings of the IEEE/CVF Conference on Computer Vision 

and Pattern Recognition, 2022, 14105–14115. 

[35] Zhang, F., Xu, M., Mao, Q. and Xu, C. Joint attribute manipulation and modality alignment learning for composing 

text and image to image retrieval. In: Proceedings of the 28th ACM International Conference on Multimedia, 2020, 

3367–3376. 

[36] Hosseinzadeh, M. and Wang, Y. Composed query image retrieval using locally bounded features. In: Proceedings 

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, 3596–3605. 

[37] Kim, J., Yu, Y., Kim, H. and Kim, G. Dual compositional learning in interactive image retrieval. In: Proceedings 

of the AAAI Conference on Artificial Intelligence, 2021, 1771–1779. 

[38] Gu, C., Bu, J., Zhang, Z., Yu, Z., Ma, D. and Wang, W. Image search with text feedback by deep hierarchical 

attention mutual information maximization. In: Proceedings of the 29th ACM International Conference on 

Multimedia, 2021, 4600–4609. 

[39] Wen, H., Song, X., Chen, X., Wei, Y., Nie, L. and Chua, T.S. Simple but effective raw-data level multimodal fusion 

for composed image retrieval. In: Proceedings of the 47th International ACM SIGIR Conference on Research and 

Development in Information Retrieval, 2024, 229–239. 


