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ABSTRACT

This study proposes a multimodal information fusion approach for visual image retrieval. The
model comprises three core components: a multimodal feature extraction module (MFEM), a
multimodal feature fusion module (MFFM), and a unified feature retrieval module (UFRM) that
process and integrate input data from different modalities. We design a Transformer-based
multimodal fusion framework that combines image and text features through multi-head self-
attention and cross-modal attention mechanisms, enabling joint feature representations with enhanced
expressiveness and precision. Unlike existing methods that rely on simple concatenation or weighted
fusion, the proposed approach learns fine-grained inter-modal interactions, thereby improving
retrieval accuracy. Experimental evaluations on three public benchmarks—FashionlQ, CIRR, and
Fashion200K—show that the proposed method outperforms current state-of-the-art approaches
across multiple metrics. The method exhibits robust performance in both accuracy and generalization
across diverse retrieval scenarios, confirming its effectiveness for complex image retrieval tasks.

Keywords: Multimodal information fusion, Visual image retrieval, Feature extraction, Transformer
model, Retrieval performance optimization

1. Introduction

Visual image retrieval [1] has gained increasing significance in contemporary information
systems, with applications spanning e-commerce [2], medical image analysis [3], video surveillance
[4], and digital libraries [5]. Traditional retrieval approaches relying on single modalities—either
images or text—prove insufficient for addressing the growing demands for precision and
effectiveness. These methods encounter limitations when processing complex user queries that
require relating and integrating multiple information sources, such as combining product images with
textual descriptions of desired modifications. In scenarios where consumers specify style preferences
alongside reference images, or clinicians integrate radiological scans with patient histories, single-
modality systems fail to capture user intent adequately, necessitating multimodal fusion approaches.

Previous research has explored retrieval enhancement through low-level visual features,
including color histograms, textures, and shape descriptors [6,7,8]. While effective for
straightforward queries, these approaches struggle with tasks requiring advanced semantic
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interpretation. With the advent of deep learning, CNN-based methods such as AlexNet, VGGNet, and
ResNet have achieved substantial improvements in extracting high-level visual features. However,
these methods remain single-modal and lack mechanisms for aligning visual data with textual
descriptions, thereby limiting their capacity to capture the semantic richness of user queries.

Subsequent work has explored multimodal fusion through concatenation or weighted
aggregation of image and text features [9,10,11,12,21]. However, these strategies lack deep semantic
interaction between modalities, resulting in shallow representations that inadequately capture fine [7]
grained relationships. Recent approaches employing cross-modal attention mechanisms, generative
adversarial networks (GANS) [8], and cross-modal contrastive learning have advanced the field but
remain constrained by computational complexity, substantial data requirements, and limited
sensitivity to subtle query variations.

This study addresses these limitations by proposing a Transformer-based multimodal
information fusion framework that integrates rich, fine-grained interactions between image and text
modalities. The model leverages pre-trained CNNs for visual feature extraction and BERT for text
encoding, with integration achieved through multi-head self-attention and cross-modal attention
layers. Unlike previous approaches, our method ensures that elements from different modalities
interact across multiple levels, yielding joint representations that better reflect semantic intent.
Additionally, metric learning based on combined contrastive and triplet losses enhances retrieval
precision and robustness.

This study demonstrates that fine-grained multimodal fusion enabled by attention-based
architecture achieves substantial improvements in retrieval performance. Through comprehensive
experiments on FashionlQ, CIRR, and Fashion200K datasets, we show that the proposed approach
consistently outperforms state-of-the-art models across accuracy, recall, and robust metrics,
establishing its viability for real-world multimodal retrieval applications.

2. Related Work

2.1 Transformer-Based Multimodal Information Fusion Model

Recent work has explored Transformer architecture for multimodal information fusion across
various vision-language tasks.

TransVG [9] introduces an end-to-end visual grounding framework that leverages the
Transformer architecture to integrate image and text information without requiring region proposals.
By directly aligning natural language descriptions with image regions, the model addresses complex
vision-language tasks with enhanced spatial-semantic correspondence. VIiLT [10] presents a vision-
language Transformer that eliminates the need for convolutional feature extractors or region
supervision. Unlike conventional multimodal models that depend on convolutional neural networks
for image encoding, VILT processes visual and textual inputs directly within the Transformer
framework, reducing computational overhead while accelerating inference and decreasing hardware
requirements. The model achieves competitive performance across multiple multimodal benchmarks.

Pixel-BERT [11] employs a deep multimodal Transformer for pixel-level alignment between
visual and textual features. This pixel-wise matching mechanism enables fine-grained vision-
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language correspondence, yielding robust cross-modal generalization across diverse tasks and
datasets. MDETR [12] presents a modulated detection framework for multimodal reasoning, utilizing
Transformer-based modulation to align image and text representations. The model demonstrates
effectiveness in visual grounding and object detection tasks by accurately matching textual
descriptions with corresponding image regions.

Despite the efficacy of Transformer-based architectures in multimodal fusion, their substantial
computational requirements and dependence on large-scale training data constrain deployment in
resource-limited settings. Additionally, current approaches exhibit limitations in capturing fine-
grained cross-modal interactions, indicating opportunities for further refinement.

2.2 Pre-Trained Models and Contrastive Learning

Recent advances in vision-language pre-training have explored various architectural and training
strategies for cross-modal representation learning.

Oscar [13] introduces object-semantic alignment during pre-training to enhance vision-language
task performance. By incorporating object-level semantic information, the model establishes tighter
correspondence between visual and linguistic features, yielding improvements in image captioning,
visual question answering, and image retrieval benchmarks. CLIP [14] employs natural language
supervision to learn transferable visual representations from large-scale image-text pairs. The model
achieves cross-task generalization by learning visual concepts directly from textual descriptions,
enabling zero-shot transfer across diverse vision-language applications.

Zaid et al. [15] investigate vision-language model scaling through noisy text supervision,
leveraging large-scale weakly-labeled data to learn broader feature representations while maintaining
task efficiency. ImageBERT [16] performs cross-modal pre-training on weakly supervised image-
text datasets, integrating visual and textual features through joint representation learning. The weakly-
supervised pre-training strategy enables feature extraction from unlabeled or partially labeled data,
improving downstream task performance. VisualBERT [17] establishes a streamlined vision-
language baseline through joint pre-training and task-specific fine-tuning, demonstrating competitive
performance across multiple benchmarks.

Despite these advances, real-time processing efficiency remains a challenge requiring further
investigation.

2.3 Based on Graph Neural Networks and Other Models

Recent research has investigated graph neural networks and complementary architectures for
multimodal information fusion in visual image retrieval through structured feature representation and
alignment strategies.

Li et al. [18] introduce a visual semantic reasoning framework for image-text matching that
integrates visual and semantic information through a reasoning module designed to resolve complex
semantic descriptions in cross-modal retrieval. Surbhi et al. [19] propose latent semantic scaling for
image-text matching by aligning visual and textual representations within a shared latent space,
enhancing visual search performance. Misra et al. [20] employ graph neural networks for multimodal
retrieval by constructing graph-structured representations where image and textual data serve as
nodes connected through cross-modal edges, enabling structured information fusion across modalities.
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VSE++ [21] refines visual-semantic embedding by incorporating hard negative mining during
training, which enhances discrimination between positive and negative samples in the embedding
space to improve retrieval precision. T2VLAD [22] leverages Vector of Locally Aggregated
Descriptors (VLAD) to align global video features with local textual features, strengthening cross-
modal retrieval robustness.

However, the computational complexity of these graph-based and embedding approaches

constrains scalability in large-scale and real-time deployment scenarios. Furthermore, modeling fine-
grained cross-modal interactions remains an open challenge.
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Figure 1. The overall structure of our network. The image and text modalities are extracted by the
feature extractor and further fused by the multimodal fusion network to obtain our results.

3. Method

In this study, we proposed an innovative visual image retrieval method based on multimodal
information fusion.

3.1 Multimodal Feature Extraction Module

We use the pre-trained ResNet-50 [24] model to extract image features. ResNet-50 is a deep
convolutional neural network that solves the gradient vanishing problem.

Given an input image |, we represent it as a pixel matrix I € RT*W*C_After processing by the
convolutional layers, pooling layers, and fully connected layers of the ResNet-50 model, we obtain a
high-level feature representation of the image F, € R%,, where d represents the feature dimension.

F; = ResNet — 50(1) Formular 1

Specifically, ResNet-50 contains multiple convolutional layers, pooling layers, and residual
blocks. Its core calculation process can be expressed as:

Fio1 =F +F(F, W) Formular 2

Where F, is the feature representation of the Ith layer, F represents the feature transformation
after the convolution operation, and W, is the weight matrix of the Ith layer.

Through this residual learning framework, we can extract the high-level feature representation

of the image. In addition, to further improve the expressiveness of image features, we also introduced
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global average pooling and batch normalization [25] techniques when extracting features. These
techniques help reduce overfitting and accelerate model convergence, thereby obtaining a more robust
feature representation.

The role of global average pooling is to average all pixel values. The formula is as follows:

__1 H w
Feap = oy &i=1 Zj:l Fi,j Formular 3

The role of batch normalization is to normalize the input of each layer so that its mean is 0 and
its variance is 1. The formula is as follows:
Foy = —2%
BN = Jo7se
Where p and o represent the mean and standard deviation of the features of the current batch,

Formular 4

respectively, and € is a small constant used to avoid the denominator being zero.
Text Feature Extraction: We use the pre-trained BERT model. BERT is a bidirectional
Transformer [26] model that captures contextual information through large-scale text pre-training.
Given the input text T, we represent it as a word sequence {tl, t2, ..., tn} where n represents the
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Figure 2. The structure diagram of our image and text modality fusion mechanism.

57



Journal of Intelligence Technology and Innovation (JITI), 2025, 3(3), 53-69.

After processing the encoding layer of the BERT model, we obtain a high-level feature
representation of the text F € R™<4, where d represents the feature dimension.
Fr = BERT(T) Formular 5
The BERT model processes input text through a multi-layer Transformer encoder. Each encoder
layer contains a multi-head self-attention mechanism and a feedforward neural network. The
calculation process of the self-attention mechanism is as follows:

Q = XWy, K = XWg,V = XW, Formular 6
T

A = softmax (%) Formular 7
k

0 =AV Formular 8

Where X represents the input features, W,, Wy, and W, are the weight matrices for the query,
key, and value, respectively, and d; represents the dimension of the key. Through a multi-layer self-
attention mechanism, BERT is able to capture the complex relationships between words in a text,
thereby generating high-quality text feature representations.

Subword tokenization specifically breaks words into smaller subword units, improving the
model's ability to handle unknown vocabulary. For example, the word "unhappiness” can be split into
"un™ and "happiness.” Positional encoding incorporates positional information. The formula is as
follows:

PE(pos, 2i) = sin (ﬁ) Formular 9
PE(pos,2i + 1) = cos (ﬁ) Formular 10

Among them, pos represents the position, i represents the index of the feature dimension, and d
represents the feature dimension.

3.2 Multimodal Feature Fusion Module

We employ a Transformer-based multimodal fusion architecture, implementing feature fusion
through self-attention and cross-modal attention mechanisms.

Given the input features, we first compute the query, key, and value matrices Q, K, and V: Next,
we compute the attention weight matrix A:

A = softmax (Q—KT) Formular 11
Vi
Where dj, is the dimension of the key. Finally, calculate the self-attention output:
0 = AV Formular 12

The self-attention mechanism calculates the similarity between input features, thereby weighting
and summing important information, achieving information fusion and interaction within features.

In our architecture, each multi-head self-attention layer includes multiple independent attention
heads, each of which independently calculates attention weights and output features. These are then
concatenated and integrated through a linear transformation layer:

MultiHead(Q,K,V) = Concat(head,, head,, ..., head, )W, Formular 13

Where h represents the number of attention heads, and W, is the weight matrix used for the
linear transformation.

The purpose of the cross-modal attention mechanism is to facilitate information exchange and
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fusion between features from different modalities. Given image features F; and text features Fy:
Q; = FWy,, Kr = FrWg,, Vr = Ft Wy, Formular 14
Where Wy, is the weight matrices for text key and value respectively. Next, calculate the cross-
modal attention weight matrix:

T
A = softmax (Q’\/dﬁ) Formular 15
k

Finally, the cross-modal attention output is calculated:

O;r = AiVr Formular 16

The cross-modal attention mechanism computes similar scores between image and text feature
representations, weighting and integrating textual information into visual features to construct joint
embeddings.

Textual descriptions encode semantic details that may be ambiguous in visual data, while images
provide spatial and structural information absent from text alone. The integration of these modality-
specific representations yields joint features with enhanced discriminative capacity.

Multi-Level Fusion: Feature fusion is extended through multi-level attention mechanisms within
the Transformer architecture, enabling hierarchical interaction between visual and textual
representations. Multi-head self-attention operates within each modality to capture intra-modal
dependencies, while multi-head cross-modal attention facilitates inter-modal alignment across
multiple projection subspaces, extracting features at varying semantic granularities.

Given image features F, and text features Fr, we first fuse the features within each modality:

01 = MultlHead(QI, KI, VI), OT = MultlHead(QT, KT, VT) FOI’mU|a 17
Next, the features is fused through the multi-head cross-modal attention mechanism:
OIT = MultlHead(Ql, KT, VT) FOI'mU|a 18

Finally, we concatenate and transform the fused features to generate a joint feature
representation:
Frysea = Concat(0y, Oyr) Formula 19
Ffinal = Ffusedeinal Formula 20
Wrinaiis the weight matrix used to transform the joint feature representation.
Through a multi-level attention mechanism and cross-modal feature fusion, we are able to
generate high-quality joint feature representations, providing a solid foundation for subsequent
retrieval.

3.3 Joint Feature Retrieval Module
We employ multiple similarity metrics and efficient retrieval techniques to ensure accurate and
fast retrieval on large datasets.

Given the fused joint feature representation Ffinal, we first normalize it:
Ffinal

IF finaull

Next, given the query image features Fquery and the database image features Fdb, we calculate

the cosine similarity between them:

Fiorm = Formula 21

Fquery'de
IFqueryllIFgpll

s = cos(Fyyery, Fap) = Formula 22
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By calculating the cosine similarity between a query image and all images in the database, we
can find the images most similar to the query image.

Nearest Neighbor Search: To improve retrieval efficiency, we employ a nearest neighbor search
algorithm. Specifically, we utilize techniques such as a k-d tree (k-dimensional tree) and LSH
(Locality-Sensitive Hashing) for fast nearest neighbor searches.

Given the query image feature Fquery and the database image feature set , we first build a k-d
tree or LSH index structure, and then perform a fast nearest neighbor search through the index
structure:

{Fanys Fangs -+ Ban, 3 = NearestNeighbors(Fyyery, k) Formula 23

Where Kk is the number of nearest neighbors.

Comprehensive Similarity Calculation: To further improve search accuracy, we combine
multiple similarity metrics. In addition to cosine similarity, we can also combine other similarity
metrics such as Euclidean distance and Hamming distance:

Aeyciidean = Fquery —Fgp I, Formula 24
—\da
dhamming = =1 |Fqueryi - dei| Formula 25

Finally, we use the weighted summation method to combine the results of multiple similarity
measurement methods to obtain a more accurate similarity evaluation:

Sfinal = Acosine “"‘cosine Aeuclidean ' deuclidean - Ahamming ' dhamming Formula 26

4. Experiment

4.1 Experimental Setup

4.1.1 FashionlQ dataset

FashionlQ constitutes a benchmark for evaluating composed image retrieval models that utilize
natural language descriptions. The dataset comprises fashion images across multiple clothing
categories paired with human-annotated relative captions, providing infrastructure for multimodal
fusion research. Visual content spans diverse garment styles, designs, colors, and patterns, ensuring
comprehensive representation of fashion-domain characteristics.

Human annotators supply textual descriptions specifying garment attributes including color,
style, pattern, and material composition. These annotations exhibit semantic diversity necessary for
models to learn nuanced linguistic variations. The dataset structure employs image-text-image triplets
where a reference image, modification text, and target image form the training and evaluation
framework. This compositional format enables models to learn correspondence between visual
features and linguistic modifications.

FashionlQ's annotation quality and standardized evaluation protocols establish its utility for
advancing composed retrieval architectures and multimodal alignment techniques.

4.1.2 CIRR dataset

The Composed Image Retrieval on Real-world images (CIRR) dataset extends compositional
retrieval to general visual domains beyond fashion. Each query comprises a reference image and
modification instruction, simulating real-world search scenarios such as "find objects similar to this
reference but with different colors".
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Image content encompasses diverse domains including human subjects, wildlife, landscapes,
urban environments, and interior scenes. Query formulations capture fine-grained semantic variations
requiring models to parse complex linguistic instructions and identify subtle visual differences.
Human-generated modification texts describe both simple attribute transformations (color, shape) and
complex scene alterations or object interactions.

CIRR's compositional query structure provides data infrastructure for personalized retrieval
systems requiring interpretation of relative rather than absolute descriptions.

4.1.3 Fashion200K dataset

Fashion200K aggregates over 200,000 garment images with detailed textual metadata across
categories including dresses, trousers, tops, outerwear, and footwear. Each image receives multiple
attribute labels and human-written descriptions specifying color, style, pattern, and material
properties. This annotation scheme yields rich visual-linguistic feature sets supporting multimodal
retrieval research.

The dataset facilitates development of retrieval architectures that process natural language
queries and supports personalized recommendation systems interpreting user preferences expressed
through textual descriptions. Fashion200K serves as infrastructure for investigating multimodal
fusion techniques in fashion-domain applications.

4.1.4 Evaluation protocols

FashionlQ Evaluation: The dataset employs dual evaluation protocols using the original
candidate pool and the VAL-refined candidate set. The VAL method eliminates redundant images
and unifies reference-target pairs, reducing candidate pool size and computational overhead while
maintaining evaluation validity.

CIRR Evaluation: Beyond standard R@K metrics, CIRR introduces RSubset@K, which
evaluates retrieval performance on subsets containing visually similar negative samples. This metric
assesses model capacity to discriminate fine-grained differences under challenging conditions.

These complementary metrics provide standardized frameworks for comparing model
architectures and quantifying performance across retrieval scenarios.

4.1.5 Implementation configuration

Visual Encoding: ResNet-50 extracts hierarchical image representations, with features from layers
4, 10, and 12 providing multi-scale visual information. Residual connections within each block
preserve gradient flow during backpropagation while capturing high-level semantic features.

Text Encoding: BERT-base-uncased generates contextual text embeddings through its bidirectional
Transformer architecture, encoding modification instructions as token sequences.

Multimodal Fusion: A cross-modal Transformer comprising 4 layers with 8-head attention
mechanisms fuses visual and textual representations into unified embeddings.

Training Regime: Optimization employs AdamW with initial learning rate 3x10~* across 150 epochs.
Learning rate decay to 0.1x occurs at epoch 75 to stabilize convergence.

Retrieval Mechanism: The Unified Feature Retrieval Module (UFRM) computes cosine similarity
between query and candidate embeddings. Incorporating multiple distance metrics (Euclidean,
Hamming) enhances retrieval robustness.
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This configuration enables efficient processing of compositional queries through effective
visual-linguistic feature integration, yielding improved retrieval accuracy across evaluation

benchmarks.

Table 1. Comparison with State-of-the-Art Methods on FashionlQ.

Methods (a)VAL Evaluation Protocol (b)Original Evaluation
Protocol
Dress Shirt Tops&Tees Overall
R@1 |R@5 |R@1 |R@5 |R@1 |R@5 |R@1 | R@5 | Mea
0 0 0 0 0 0 0 0 n
Image+TextConcatenati | 10.52 | 28.98 | 13.44 | 34.60 | 11.36 | 30.42 | 11.77 | 31.33 | 21.5
on 5
TIRG[27] 14.89 | 34.66 | 18.26 | 37.89 | 19.08 | 39.62 | 17.40 | 37.39 | 27.4
0
MAAF[28] 23.80 | 48.60 | 21.30 | 44.20 | 27.90 | 53.60 | 24.30 | 48.80 | 36.5
5
ComposeAEW/BERT[2 | 14.03 | 35.10 | 13.88 | 34.59 | 15.80 | 39.26 | 19.89 | 36.31 | 25.4
9] 4
CIRPLANTI6] 17.45 | 40.41 | 17.53 | 38.81 | 21.64 | 45.38 | 18.87 | 41.53 | 30.2
0
VAL[30] 22.53 | 44.00 | 22.38 | 44.15 | 27.53 | 51.68 | 24.15 | 46.61 | 354
0
JPM[31] 21.38 | 45.15 | 22.81 | 45.18 | 27.78 | 51.70 | 23.99 | 47.34 | 35.6
7
HFF[32] 26.20 | 51.20 | 22.40 | 46.01 | 29.70 | 56.40 | 26.10 | 51.20 | 38.6
5
CosMo[33] 25.64 | 50.30 | 24.90 | 49.18 | 29.21 | 57.46 | 26.58 | 52.31 | 39.4
5
SACW/BERT([34] 26.52 | 51.01 | 28.02 | 51.86 | 32.70 | 61.23 | 29.08 | 54.70 | 41.8
9
FashionVLP[35] 32.42 | 60.29 | 31.89 | 58.44 | 38.51 | 68.79 | 34.27 | 62.51 | 48.3
9
Ours 33.86 | 61.08 | 35.57 | 62.19 | 42.07 | 69.30 | 37.17 | 64.19 | 50.6
8
Image+TextConcatenati | 14.92 | 34.95 | 12.71 | 30.08 | 14.28 | 34.73 | 13.92 | 33.25 | 23,5
on 9
TIRG 14.13 | 34.61 | 13.10 | 30.91 | 14.79 | 34.37 | 14.01 | 33.30 | 23.6
6
CosMo 21.39 | 44.45 | 16.90 | 37.49 | 21.32 | 46.02 | 19.87 | 42.62 | 31.2
5
ARTEMIS 25.68 | 51.05 | 21.57 | 44.13 | 28.59 | 55.06 | 25.28 | 50.08 | 37.6
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8
FashionVLP 26.77 | 53.20 | 22.67 | 46.22 | 28.51 | 57.47 | 25.98 | 52.30 | 39.1
4
Ours 28.85 | 55.38 | 25.64 | 50.22 | 33.61 | 60.48 | 29.37 | 55.36 | 42.3
6
Table 2. Comparison with State-of-the-Art Methods on CIRR.
Methods R@K RSuUbset@K §2@5+R8ubset@l
K=1 | K= |K=1 | K=5 | K=1 | K=2 | K=3
0 0
Image+TextConcatenat | 12.4 | 40.2 | 57.5 | 87.2 | 23.7 | 45.1 | 65.5 | 31.99
ion 4 4 2 9 4 2 0
MAAF 10.3 | 33.0 [48.3 |80.0 |21.0 |41.8 |61.6 |27.04
1 3 0 6 5 1 0
MAAFwW/BERT 10.1 | 33.1 [48.0 |80.5 |22.0 | 424 |62.1 | 27.57
2 0 1 7 4 1 4
TIRG 146 | 48.3 | 64.0 |90.0 | 22.6 |44.9 |65.1 | 3552
1 7 8 3 7 7 4
ARTEMIS 169 |46.1 |61.3 |87.7 |39.9 |62.2 | 75.6 | 43.05
6 0 1 3 9 0 7
CIRPLANT 195 | 525 [68.3 |92.3 |39.2 | 63.0 | 79.4 | 45.88
5 5 9 8 0 3 9
Ours 25.7 | 61.7 | 759 | 951 [51.8 |76.2 |89.2 |56.81
6 6 0 3 6 6 5
Table 3. Comparison with state-of-the-art methods on Fashion200K.
Methods Fashion200K
R@10 R@50 Mean
TIRG 42,5 63.8 53.2
JGAN[36] 45.3 65.7 55.5
LBF[37] 48.3 68.5 58.4
JPM 46.5 66.6 56.6
DCNET[38] 46.9 67.6 57.3
VAL 49.0 68.8 58.9
HFF 49.4 69.4 59.4
CosMo 50.4 69.3 59.9
DATIR[39] 48.8 71.6 60.2
FashionVVLP 49.9 70.5 60.2
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ARTEMIS o51.1 70.5 60.8
Ours 52.2 72.2 62.2

4.2 Comparison Results with SOTA Methods
We benchmarked the proposed method against state-of-the-art approaches across three datasets,
with results presented in Tables 1, 2, and 3.

4.2.1 FashionlQ dataset performance

VAL Protocol: The method achieved R@10 scores of 33.86, 35.57, and 42.07 for Dress, Shirt, and
Tops&Tees categories, respectively, with corresponding R@50 scores of 61.08, 62.19, and
69.30 (Table 1). Average metrics reached R@10=37.17, R@50=64.19, and mean
precision=50.68. Comparative baselines include FashionVLP (R@10: 32.42/31.89/38.51,;
R@50: 60.29/58.44/68.79; mean precision: 48.39) and SAC w/ BERT (R@10:
26.52/28.02/32.70; R@50: 51.01/51.86/61.23; mean precision: 41.89) [54,55,56].

Original Protocol: Performance under the standard evaluation yielded R@10 scores of 28.85, 25.64,
and 33.61 across categories, with R@50 scores of 55.38, 50.22, and 60.48 (average
R@10=29.37, R@50=55.36, mean precision=42.36). Baselines include FashionVLP (R@10:
26.77/22.67/28.51; R@50: 53.20/46.22/57.47; mean precision: 39.14) and ARTEMIS (R@10:
25.68/21.57/25.28; R@50: 51.05/44.13/55.06; mean precision: 37.68).

4.2.2 CIRR dataset performance

R@K Metrics: The method obtained R@K scores of 25.76, 61.76, 75.90, and 95.13 for
K={1,5,10,50}, respectively (Table 2). Comparative results include CIRPLANT
(19.55/52.55/68.39/92.38) and ARTEMIS (16.96/46.10/61.31/87.73).

RSubset@K Metrics: Performance on visually similar negative samples yielded RSubset@K scores
of 51.86, 76.26, and 89.25 for K={1,2,3}, compared to CIRPLANT (39.20/63.03/79.49) and
ARTEMIS (39.99/62.20/75.67). The composite metric (R@5+RSubset@1)/2 reached 56.81
versus 45.88 (CIRPLANT) and 43.05 (ARTEMIS).

4.2.3 Fashion200K dataset performance
The method achieved R@10=52.2 and R@50=72.2, with average performance

(R@10+R@50)/2=62.2 (Table 3). Comparative baselines include ARTEMIS (R@10=51.1,

R@50=70.5, average=60.8), FashionVLP (R@10=49.9, R@50=70.5, average=60.2), CoSMo

(R@10=50.4, average=59.9), DATIR (R@50=71.6), HFF (R@50=69.4), LBF (R@10=48.3), and

TIRG (average=53.2).

These results demonstrate consistent improvements across evaluation protocols and datasets,
particularly in fine-grained retrieval tasks requiring discrimination among visually similar candidates.
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Figure 3. Qualitative results on the FashionlQ, CIRR, and Fashion200K datasets.

Figure 3 presents qualitative retrieval results across the three datasets. Each image group
displays the combined query (reference image + modification text) on the left, with the top eight
retrieval candidates ranked from left to right. Green boxes denote ground-truth targets.

FashionlQ Dataset: The model retrieved target images conforming to specific attribute
modifications (Figure 5a). For the query "dress with a pink hue and spaghetti straps,” retrieved
candidates matched both color and structural specifications. Performance indicates successful
encoding of fine-grained visual attributes from natural language descriptions.

CIRR Dataset: Retrieval on open-domain images with human-generated modifications revealed both
capabilities and limitations (Figure 5b). For the query "There are more animals on the thorny
ground,” top-ranked candidates contained the specified elements. However, the first two
retrieved images exhibited high visual similarity in lighting and subject composition, with
incorrect ranking attributable to insufficient discrimination of fine-grained spatial relationships
between subjects and objects (person-phone interaction).

Fashion200K Dataset: The model processed queries describing attribute transformations using
domain-specific grammatical structures (Figure 5c¢). For "replace geometric patterns with paisley
patterns,"” retrieved images displayed the target pattern while maintaining style consistency with
the reference image, indicating effective processing of attribute-level modifications.

Across datasets, the method retrieved candidates matching query specifications, with
performance varying by query complexity and the granularity of required visual discrimination.
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Figure 4. Performance variation with different number of layers L and heads H in the cross-model
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transformer.
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Figure 5. Performance variation with different number of spatial regions X in the local alignment
module.

4.3 Ablation Experiments

4.3.1 Ablation study: component analysis
Table 1 and Table 2 presents ablation results comparing module combinations on FashionlQ and

CIRR datasets. The full model (Baseline + MFFM + UFRM) achieved optimal performance across

both benchmarks.

FashionlQ Dataset: The complete architecture yielded R@10=37.17, R@50=64.19, and mean
precision=50.68. Alternative configurations produced lower scores: Baseline + MFFM + LA
(R@10=36.03, R@50=62.99, mean=49.51), Baseline + MFFM + MFEM (R@10=35.81,
R@50=61.71, mean=48.76), and Baseline + MFEM (mean=48.76).

CIRR Dataset: The composite metric (R@5+RSubset@1)/2 reached 56.81 for the full model,
compared to 55.33 (Baseline + MFFM + LA), 54.92 (Baseline + MFFM + MFEM), and 51.78
(Baseline + MFEM).

Performance gains of 1.17 points (FashionlQ mean precision) and 1.48 points (CIRR composite
metric) over the strongest baselines indicate complementary contributions from the three modules in
capturing cross-modal correspondences.

4.3.2 Hyperparameter sensitivity analysis
Transformer Layers (Figure 4a): Retrieval performance increased with layer depth up to L=4

(R@10=37.17, R@50=64.19), then plateaued or declined at L=6 and L=8. The saturation suggests

sufficient representational capacity at four layers, with deeper architectures potentially introducing

overfitting or computational overhead without commensurate accuracy improvements.

Attention Heads (Figure 4b): Increasing head count from H=1 to H=8 improved metrics (R@10:
33.05—37.17; R@50: 59.86—64.19). Performance degraded at H=16 and H=32, indicating that
eight heads optimally balance multi-perspective semantic modeling against parameter efficiency.
Excessive heads may fragment attention without additional discriminative benefit.

Regional Features (Figures 5a, 5b): R@10 and R@50 peaked at eight regions (37.17 and 64.19,
respectively), with lower scores at N={0,4,12}. This configuration balances localized feature
extraction with computational tractability; fewer regions provide insufficient spatial granularity,
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while excess regions introduce feature redundancy without enhancing discrimination.
5. Conclusions

Existing multimodal fusion approaches concatenate or weight image and text features
[9,10,11,12,21], producing shallow representations that fail to capture fine-grained cross-modal
relationships due to limited semantic interaction between modalities [7]. Advanced methods
employing cross-modal attention mechanisms, generative adversarial networks (GANSs) [8], and
contrastive learning frameworks exhibit three primary limitations: high computational complexity,
substantial training data requirements, and insufficient sensitivity to subtle query variations.

This paper addresses these limitations through a Transformer-based multimodal fusion
architecture that enables deep semantic interaction between visual and textual modalities. The
framework employs pre-trained CNNs for image feature extraction and BERT for text encoding,
integrating these representations through cascaded multi-head self-attention and cross-modal
attention layers. Unlike prior methods, this architecture facilitates hierarchical cross-modal
interactions, yielding joint representations that more accurately encode semantic correspondences.
Metric learning with combined contrastive and triplet losses further enhances retrieval
discriminability.

This study demonstrates that attention-driven fine-grained multimodal fusion substantially
improves retrieval performance. Extensive experiments on FashionlQ, CIRR, and Fashion200K
benchmarks show consistent superiority over state-of-the-art methods across accuracy, recall, and
robustness metrics, establishing practical viability for real-world multimodal retrieval applications.
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