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ABSTRACT

Carbon neutrality research, as a fundamental principle of environmental sustainability, has
garnered widespread global attention. However, despite some progress, significant shortcomings
persist. Current practices and methodologies in the field of carbon neutrality face numerous
challenges and limitations, warranting further in-depth research and improvement. In this context, the
importance of time-series data has become increasingly pronounced. Time-series data are crucial for
understanding the carbon neutrality process, simulating future trends, and making precise predictions.
To effectively harness this information, we propose an innovative TCN-BILSTM-Attention model
that amalgamates temporal and spatial information with attention mechanisms to enhance our
understanding and optimization of carbon neutrality strategies. Through extensive experimental
validation, our research demonstrates the exceptional performance of the TCN-BILSTM-Attention
model in the domain of carbon neutrality. Specifically, the proposed model outperforms existing
approaches across four datasets (EPA, EIA, EEA, NREL). For instance, it achieved an accuracy of
97.53% on the EPA dataset and 96.12% on the EIA dataset. Overall, this study has significant
implications not only for the practical application of carbon neutrality principles but also for
providing novel perspectives and methodologies in global environmental sustainability and climate
change mitigation. By offering innovative models and analytical tools for sustainable development,
this work contributes valuable resources toward achieving carbon neutrality and advancing
environmental conservation efforts.

Keywords: Sustainable development, Carbon neutrality, Time-Series data, TCN-BILSTM-Attention
model, Decision support

1. Introduction

In today's world, carbon neutrality has emerged as one of the most critical challenges facing
global society. With the escalating impacts of climate change, reducing greenhouse gas emissions
and achieving carbon neutrality have become shared goals of the international community [1]. The
significance of carbon neutrality lies not only in mitigating climate change but also in ensuring the
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'sustainability of future human societies and the health of ecosystems [2]. However, the pursuit of
carbon neutrality is fraught with numerous challenges and obstacles.

Within this context, time series forecasting occupies a particularly important position in carbon
neutrality research. Time series data consist of sequences of data points ordered chronologically,
including meteorological data, carbon emission records, and energy consumption data, among others.
These data are essential for decision-making and planning in carbon neutrality initiatives, as they
reflect temporal changes in environmental and industrial activities. Leveraging deep learning
techniques for time series prediction enables decision-makers to better anticipate future trends and
challenges, thereby facilitating the formulation of more effective carbon neutrality strategies.
Consequently, time series forecasting holds substantial potential in carbon neutrality research, and
this paper explores how deep learning methods can enhance forecasting accuracy to support carbon
neutrality goals [3,4].

To date, time series analysis has made significant contributions in fields such as energy
forecasting and sustainable development [5]. For example, its application in ping pong training camps
has proven valuable. By applying time series analysis to track and analyze operational and
performance data, critical temporal trends and patterns can be identified, offering essential insights
for planning and decision-making within training camps [6,7]. Furthermore, time series analysis helps
managers understand seasonal variations, such as fluctuations in student enrollment during summer
and winter breaks, thereby enabling more efficient resource and personnel allocation. Recent
developments in time series analysis within carbon neutrality research include the following
approaches:

Some researchers have employed Convolutional Neural Networks (CNNs) for carbon emission
prediction tasks [8]. CNNs excel at extracting features from spatiotemporal data, and effectively
capturing patterns across spatial and temporal dimensions [8]. However, these models typically
require large datasets for training, making them less effective in data-scarce scenarios, and they often
lack flexibility in integrating heterogeneous data sources [9].

On the other hand, Long Short-Term Memory (LSTM) networks are widely used for energy
consumption optimization [10]. LSTM models are well suited for time series data due to their memory
mechanisms, which enable forecasting of future energy demand. Nevertheless, these models have
certain limitations in modeling nonlinear relationships within the data, potentially struggling to
capture complex temporal dynamics [11,12].

Deep Reinforcement Learning (DRL) has made significant strides in carbon neutrality policy
optimization [14]. By simulating carbon markets and policy environments, DRL models can learn
optimal emission strategies. However, training, and tuning DRL models require substantial
computational resources, and concerns regarding robustness and interpretability remain in real-world
policy applications [15].

Time Series Generative Adversarial Networks (TS-GANs) have been applied to generate
realistic time series data, including carbon emission records. These models improve data
completeness by generating synthetic samples to address missing data issues. However, TS-GANs
face challenges in long-term forecasting and stability, particularly when external influencing factors
are present [16,17,18].
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Bidirectional Long Short-Term Memory (BILSTM), and an attention mechanism, specifically
devised to forecast carbon neutrality. The TCN effectively captures long-term dependencies and
spatiotemporal patterns, improving temporal dynamics and prediction accuracy of carbon emission.
The BILSTM efficiently processes sequential data, capturing both long-term and short-term
dependencies, while integrating information over varying temporal scales. The attention mechanism
selectively emphasizes crucial time steps, enhancing both predictive accuracy and model
interpretability. By leveraging the strengths of each component, the proposed approach generates
accurate forecasts that support carbon neutrality strategies, sustainable development, and climate
change mitigation.

2. Method

The TCN-BILSTM-Attention network integrates a Temporal Convolutional Network (TCN),
Bidirectional Long Short-Term Memory (BILSTM), and an attention mechanism to improve carbon
emission prediction accuracy and interpretability. Each component plays a distinct yet
complementary role in addressing the complexities of carbon neutrality forecasting. The BILSTM
processes sequential data by capturing both long- and short-term dependencies, while integrating
information across multiple temporal scales to enhance prediction performance. The attention
mechanism highlights critical time steps, improving accuracy and providing interpretability, which
enables decision-makers to understand the basis of model predictions and formulate effective carbon
offset strategies.

The architecture of the TCN-BILSTM-Attention network is structured as follows: First, the
model receives historical time series data related to carbon emissions and associated influencing
factors. The TCN module is then applied to capture long-term dependencies within the input data and
extract temporal features. It utilizes dilated convolutions to expand the perceptual field and enable
the identification of spatiotemporal patterns over extended time horizons. Next, the processed data is
passed through the BILSTM layer, which refines the feature representation by capturing both forward
and backward dependencies. Subsequently, the attention mechanism is applied to the BILSTM
outputs. It dynamically assigns attention weights to different time steps, accentuating the most
influential time points for prediction. Finally, the weighted BILSTM outputs are used to generate
accurate predictions of future carbon emissions trends. The overall network architecture and data flow
are illustrated in Figure 1.
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Figure 1. TCN-BILSTM-Attention Network Architecture Diagram.

2.1 TCN Model

The TCN model is a deep learning architecture for temporal time series data, based on CNNs.
TCN utilizes convolutional layers to capture information across different time intervals [19]. Unlike
Recurrent Neural Networks (RNNs), TCN avoids recurrent structures and instead captures long-term
dependencies by sliding convolutional filters across time steps. Adjusting filter size and number
enhances its ability to model complex time series data [20].

TCN is essential for capturing long-term dependencies and extracting temporal features in our
model. TCN's ability lies in expanding the perception field to capture spatiotemporal patterns over
extended time intervals. This contributes to enhancing our model's capability to model time series
data, particularly for tasks like carbon offset prediction where temporal relationships are of paramount
importance. By combining TCN with other components such as BILSTM and attention mechanisms,
our model can provide more accurate predictions of future carbon emission trends. Figure 2 illustrates
the network flow of TCN [14].
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Figure 2. Flow chart of the TCN model.

Convolution Operation:

C(x,K) = (x*K)[1:T] =ix[i]-k[i]

i1 [Formular 1]
where: C(X,k) denotes the convolution operation performed between the input sequence X and the

convolutional kernel Kk .
Dilated Convolution:

C(x.k) = (x*, k)[l:T]:ix[i}k[i -d]

=) [Formular 2]

where: C(X,K) is the dilated convolution of sequence X with kernel k. X is the sequence. k is the

kernel. T is the sequence length. $d$ is the dilation rate for spacing kernel elements.
Residual Block:

R(X) = F(X)+X [Formular 3]
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where: R(X) denotes a residual block. F(X) signifies the output of the Temporal Convolutional

Network's convolutional layers. X denotes the input to the residual block.
Temporal Convolutional Layer:

F(X)=o(C(x,k)+b)  [Formular 4]

In this context, F(X) denotes the output generated by a temporal convolutional layer. The
symbol o refers to the activation function, such as the Rectified Linear Unit (ReLU). The operation
described by C(X.K) is the convolution process. The element represented by k is the convolutional

kernel, while b corresponds to the bias term.
Stacking Layers:

F(x)=FP(F" (.. FO(x)..)) [Formular 5]

where: F(X) is the TCN output with stacked temporal convolutional layers. L indicates the number
of layers. FO is the output of the $i$-th layer.

2.2 BILSTM Model

BILSTM, a type of RNN, processes sequential data through bidirectional hidden states,
enhancing contextual understanding [21]. It is useful in NLP and time series by capturing long-term
and short-term dependencies via gating units. See Figure 3 for the network diagram [22].
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Figure 3. Flow chart of the BILSTM model.
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In our model, the BILSTM module is specifically employed for handling sequential data. It
possesses robust memory and sequence modeling capabilities, allowing it to capture intricate
relationships within the data [23]. This is crucial for tasks like carbon offset prediction because it
enables us to gain a better understanding of the temporal dependencies between carbon emissions and
related factors. BILSTM not only provides comprehensive modeling of sequential data but also
captures reverse information, further improving the accuracy of our model's predictions. Therefore,
BILSTM plays a pivotal role in our model, enhancing its performance [24].

BILSTM Forward Pass:

ﬁt = LSTM(Xt’ﬁ—l) [Formular 6]

h =LSTM(X,h,,,)

where: Mt is the forward hidden state at t; X is input at t in the forward pass; N is the backward

hidden state at t; * is input at t in the backward pass.
BILSTM Concatenation:

h =[h.h] [Formular 7]

where: represents the concatenated hidden state at time step t.
Loss Function:

== Y.ilog(¥,,)

1 ioL [Formular 8]
where: £ represents the loss function, T is the sequence length, and N indicates the number of
classes. The true label for class i at time step t is denoted by Yti, while Yii denotes the predicted

probability for class i attime step t.
Backward Pass (Backpropagation):

5t,i = 9t,i ~Yii
&, = &, -softmax(¥,) - (1-softmax(¥,))  [Formular 9]
5t :5t +(VV0T 'é‘tﬂ)'tanh'(ét)

0,

where: %i: error at time t for class i. % error at time t. Sigmoid () : sigmoid derivative. t@nh () :

hyperbolic tangent derivative. : cell state in backward pass at time t.

Gradient Update:

T -
oL _ th -h
aWo t=1
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0L <
=20
ob, 3 [Formular 10]
8_§ =W -5 + _8}
ah[ ahHl
8_§ =W -5 + —ahﬁ
ah[ ahHl
oL oL oL

where: W, s the loss gradient w.r.t. W, - by wort. bo; N s the forward hidden state loss

gradient at t.

2.3 Dynamic Attention Mechanism

Dynamic attention is a popular technique in deep learning. Its core principle involves the
dynamic allocation of varying weights or attention to different segments or time steps within input
data based on their relative importance [25]. The fundamental concept underlying this mechanism is
to empower the model to automatically prioritize information that is contextually relevant to the
ongoing task, particularly when processing sequential or other complex data types, thus resulting in
performance improvements [26]. Figure 4 provides a visual representation of the network diagram
illustrating the dynamic attention mechanism. Once the model computes the weights, the attention
mechanism is employed to combine the input data with these weights, creating a representation that
places greater emphasis on important segments or time steps. This augmentation significantly
enhances the model's performance.
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Figure 4. Flow chart of the attention model.

Our model uses a dynamic attention mechanism for smarter, adaptive attention allocation in time
series processing. This improves the model's ability to understand key time points or features,
enhancing accuracy in predicting future carbon emissions and aiding in effective carbon neutrality
strategies.

Attention, =softmax(Key, -Query,)  [Formular 11]

where; AUENtON, renresents the attention score at time step t. K€Yt is the key vector at time step t.

QUErY, s the query vector at time step t.

N
Weighted, = >_ Attention, - Value,
i1 [Formular 12]

where; Weighted, s the weighted sum of values at time step t. N is the total number of time steps
or elements. ValU&; represents the value at time step i.

Context, = Weighted, +Query, [Formular 13]

where: CONEXY, s the context vector at time step t.

Residual, = Normalization(Context, + Input, ) [Formular 14]

9
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where: Residual, js the residual vector at time step t. Normalization is a normalization function.

INPUt, s the input vector at time step t.
Output of Dynamic Attention Layer:

Output, = Feed-Forward(Residual,) [Formular 15]

where; Output, represents the output of the dynamic attention layer at time step t.

Feed-Forward is a feed-forward network applied to the residual vector.

3. Experiments

3.1 Dataset

This experiment validates our model using four datasets: EPA, EIA, EEA, and NREL.

EPA Dataset [27]: The Environmental Protection Agency (EPA) dataset contains extensive
information on carbon emissions, air quality, and environmental factors. By incorporating this dataset
into our experiment, we aim to leverage its detailed emissions data and environmental metrics to
refine our model's accuracy in predicting carbon emissions trends.

EIA Dataset [28]: The Energy Information Administration dataset provides crucial data on
energy production, consumption, and trends. Integrating this dataset improves our understanding of
energy usage patterns and their relationship with carbon emissions, thereby refining predictive
accuracy.

EEA Dataset [29]: The European Environment Agency (EEA) dataset offers insights into carbon
emissions and environmental conditions specific to European regions. Including this dataset enhances
the geographical diversity of our study and ensures the adaptability of the proposed model across
different regulatory environments.

NREL Dataset [30]: The National Renewable Energy Laboratory (NREL) dataset is a valuable
source for renewable energy data, such as solar and wind energy production. By incorporating NREL
data, we investigate the impact of renewable energy sources on carbon emissions and integrate these
dynamics into our predictive model.

By employing multiple datasets, we conduct a comprehensive evaluation of the model's
effectiveness across diverse regions, energy sources, and environmental conditions. This multi-
faceted approach ensures that the proposed Dynamic Attention Mechanism can provide valuable
insights and accurate predictions to support the development of effective carbon neutrality strategies
on a global scale.

3.2 Experimental Details

Stepl: Data preprocessing

e In the initial data preprocessing stage, raw datasets are cleaned to ensure data integrity and
quality by addressing missing values, handling outliers, and resolving inconsistencies. This
process establishes a solid foundation for subsequent analysis.

e To streamline the dataset and focus on the most relevant factors, feature selection is performed.

10
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This step involves identifying and retaining key variables that have a significant impact on the
research objectives, thereby reducing dimensionality and improving computational efficiency.
Data may have varying scales, which can impact the performance of certain algorithms.
Normalization or scaling is applied to bring all features to a similar range, often between 0 and
1, to prevent any undue influence of scale on the analysis.

Step2: Model training

Network Parameter Configurations: In the realm of model performance optimization,
hyperparameters play a pivotal role. The following hyperparameters were meticulously
configured: (1) The learning rate was set to 0.001 for gradient descent optimization, a value
selected after comprehensive experimentation to optimize the trade-off between convergence
speed and stability. (2) A batch size of 32 was selected to achieve an optimal balance between
computational efficiency and gradient estimation accuracy. (3) The model underwent 100
training iterations, a decision informed by the convergence pattern observed during the training
process and constrained by available computational resources. (4) A Dropout rate of 0.2 was
integrated into the model architecture as a measure to alleviate issues of overfitting.

Model Architecture Design: The architectural design of the model is crucial to its effectiveness.
The detailed architecture of the TCN-BILSTM-Attention network is as follows:

TCN Module: A Temporal Convolutional Network (TCN) module is employed to capture long-
term dependencies and extract temporal features. The module consists of four convolutional
layers, each with 64 filters. We have used dilation convolution technology with dilation rates of
1,2, 4, and 8. This design extends the perceptual field, enabling the model to learn spatiotemporal
patterns over extended time intervals.

BILSTM Module: Bidirectional Long Short-Term Memory (BILSTM) networks are utilized to
refine feature representations. The BILSTM module comprises two LSTM layers, each
containing 128 hidden units. This design effectively captures both forward and backward
dependencies, providing a solid foundation for modeling temporal data.

Attention Mechanism: An attention mechanism on top of the BILSTM outputs to dynamically
assign weights to different time steps, highlighting the most influential temporal features. A
multi-head self-attention mechanism with 8 attention heads is employed to comprehensively
capture key information within time series data.

In summary, these detailed parameter designs reflect our meticulous adjustments to the model
architecture, ensuring its ability to capture complex patterns and dependencies within time series
data.

Model Training Process: A robust training methodology is crucial for ensuring both model
convergence and generalization. The following approaches were employed: (1) Mean squared
error (MSE) was used as the loss function for model optimization, which is particularly apt for
regression tasks such as carbon offset prediction. (2) Optimization of the loss function was
achieved using the Adam optimizer with a learning rate set at 0.001. Adam is renowned for its
efficacy in optimizing deep learning models. (3) Model performance was evaluated using a
validation dataset, enabling the assessment of generalization capability and facilitating
adjustments to mitigate overfitting. (4) Periodic model checkpoints were implemented to

11
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preserve the best-performing models for future deployment.

3.3 Experimental Results and Analysis

Table 1 provides a detailed comparison of model performance on EPA, EIA, EEA, and NREL
datasets using metrics like accuracy, recall, F1 score, and AUC. The analysis unambiguously
demonstrates that our model exhibits superior performance across all datasets, displaying marked
advantages over competing models. Notably, our model attained an accuracy of 97.53% on the EPA
dataset, significantly surpassing other models, such as that of Gao et al., which achieved an accuracy
of only 85.35%. Likewise, on the EIA dataset, our model displayed remarkable efficacy, attaining an
accuracy of 97.58% and outperforming other models by a substantial margin. On the EEA dataset,
our model reached an accuracy of 92.38%, as opposed to the model by Huang et al., which achieved
only 88.58% accuracy. Within the NREL dataset, our model demonstrated exceptional performance
across metrics such as accuracy, recall, F1 score, and AUC. These findings suggest that our model
performs exceptionally in carbon offset prediction tasks, providing more precise forecasts of future
carbon emission trends. Our model exhibits an enhanced understanding of the significance of various
temporal points or features in time series data, contributing to improved predictive accuracy. The
model's dynamic attention mechanism enables automatic identification of crucial moments in the time
series, which is essential for developing effective carbon offset strategies.

In conclusion, our model demonstrates noteworthy advantages across multiple datasets,
highlighting its excellent performance in carbon offset prediction tasks. Figure 5 provides a
visualization of the tabulated data, further accentuating the superiority of our methodology. These
outcomes bear significant implications for achieving carbon neutrality objectives and furnishing
robust support for environmental conservation and climate change mitigation.

Table 1. The comparison of different models in different indicators comes from the EPA dataset,
EIA dataset, EEA dataset, and NREL dataset.

Model Datasets

EPA EIA EEA NREL

Accuracy Recall F1 Sorce AUC Accuracy Recall F1 Sorce AUC Accuracy Recall F1 Sorce AUC Accuracy Recall F1 Sorce AUC
Gaoetal. [31] |85.35 86.26 8556 91.89 89.56 91.32 8532 91.7891.75 925 8753 84.4287.23 87.02 87.98 90.69
Zhouetal. [32] |89.26  86.57 87.89 92.36 96.63  90.56 88.45 84.5392.43  92.32 8858 91.8591.88  87.77 90.34 87.98

[HS:TQ el lor27 8425 88.89 92729236 9278 9323 8846 87.12 8548 8921 89.3192.98 8515 85.56  93.03
Caietal [34] [89.26 92.18 86.35 86.46 88.44 86.78 87.46 89.53 9385 OL73 89.17 87.638825 89.78 8623 84.48
;‘;‘"g etal  losss 9208 8483 85809552 9056 8523 87.78 9227  88.23 9053 9186 86.48 8565 8748 8478
Huoetal [35] [0244 88.36 89.58 87.3787.85 91.32 8325 86.729350 89.65 8853 91989334  88.80 87.86 86.54
ours 9753 9520 9320 96.80 9758 9553 0446 96.43 98.06 9561 9238 96399733 9531 9342 9576
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Figure 5. Comparison of model performance on different datasets.

In Table 2, we present a comparison of various indicators for different models across the EPA,
EIA, EEA, and NREL datasets. These indicators include the number of parameters (in millions, M)
and the computational complexity measured in FLOPs (floating-point operations per second, in
billions, G). Looking at the table, it's evident that our model achieves remarkable performance with
significantly fewer parameters and lower computational complexity compared to other models. For
instance, in the EPA dataset, Gao et al.'s model has 455.47 million parameters and 41.65 billion
FLOPs, while our model only requires 116.45 million parameters and 21.28 billion FLOPs to achieve
superior accuracy. Similar trends are observed across all datasets.

This efficiency in terms of model size and computational complexity is crucial in real-world
applications, as it allows for faster inference and reduced computational resource requirements. It
also aligns with the goal of sustainability, where resource-efficient models are preferred.

In summary, as shown in Table 2, our model outperforms competitors not only in terms of
predictive accuracy but also in its efficiency with fewer parameters and lower computational
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'complexity. This combination of superior performance and efficiency positions our model as an
excellent choice for carbon offset prediction tasks. Furthermore, Figure 6 visualizes the content of
Table 2 to provide a more intuitive comparison between models and their efficiency metrics.

Table 2. The comparison of different indicators of different models from the EPA dataset, EIA dataset,
EEA dataset, and NREL dataset.

Method Datasets
EPA EIA EEA NREL
Parameters(M) Flops(G) Parameters(M) Flops(G) Parameters(M) Flops(G) Parameters(M) Flops(G)
Gao et al. 455.57 41.75 253.63 55.32 381.93 47.28 513.25 53.63
Zhou et al. 251.82 45.62 520.54 55.37 375.68 56.47 119.86 47.68
Huang et al. 185.75 45.43 276.19 59.02 44293 39.00 189.24 63.21
Caietal. 465.16 76.65  465.77 64.48 257.30 4535  458.04 68.85
Huang et al. 115.66 49.95 183.97 65.31 522.01 71.65 383.81 47.52
Huo et al. 269.72 45.63 244.26 59.16 326.85 50.65 295.46 73.14
Ours 116.45 21.28 122.5 28.25 124.33 25.32 142.45 28.56
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Figure 6. Comparison of different indicators of different models.

3.4 Ablation Study

Table 3 presents a thorough assessment of the BILSTM module's performance via ablation
experiments, analyzing metrics including accuracy, recall, F1 score, and AUC across multiple
datasets. The BILSTM consistently exhibited superior performance, attaining an accuracy rate of
97.53\% on the EPA dataset, thereby surpassing the outcomes of models such as GRU, BIGRU, and
LSTM. This consistent superiority across datasets highlights the effectiveness of the BILSTM within

14
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our TCN-BILSTM-Attention network, as it efficiently captures long-term dependencies and
processes information at various time scales, thus enhancing both accuracy and robustness. Figure 7
offers a visual depiction of the BILSTM module's superiority over other models, especially on the
EPA dataset, underscoring its critical role in carbon offset prediction.

Table 3. Ablation experiments on the BILSTM module come from EPA dataset, EIA dataset, EEA
dataset, and NREL dataset.

Model Datasets
EPA EIA EEA NREL
Accuracy Recall F1 AUC Accuracy Recall F1 AUC Accuracy Recall F1 AUC Accuracy Recall F1 AUC
GRU 86.35 89.85 84.42 88.88 91.33 89.33 86.88 90.89 95.33 85.40 86.33 86.64 91.88 86.96 90.88 93.43
BIGRU 93.46 91.82 90.88 85.52 90.23 86.63 85.33 91.33 95.66 85.54 89.96 89.88 89.88 84.42 86.88 88.47
LSTM 89.42 93.58 87.42 88.99 88.55 91.46 90.88 93.88 94.33 93.86 86.33 92.32 90.43 93.85 88.06 88.55
BILSTM 97.63 94.68 93.88 92.99 96.22 94.88 93.46 91.82 98.45 96.01 93.85 92.55 97.62 94.77 93.32 94.41
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Figure 7. Comparison of model performance on different datasets.

4. Conclusions

This study introduces an innovative approach employing the TCN-BILSTM-Attention network
to address the significant challenge of predicting carbon offsets. Extensive experiments were
conducted using four distinct datasets, namely EPA, EIA, EEA, and NREL, to evaluate the
effectiveness of the proposed model. The outcomes of the comparative analysis indicate that our
model markedly outperforms existing baseline models, including those developed by Gao et al., Zhou
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et al., and Huang et al., across several performance metrics such as accuracy, recall, F1 score, and
AUC. Additionally, ablation studies were performed to confirm the critical role of the dynamic
attention mechanism module. The experimental results highlight the remarkable efficacy of our model
in carbon offset prediction, thereby providing substantial support for both scholarly research and
practical applications in the field of carbon neutrality.

Notwithstanding the considerable efficacy demonstrated by our model in predicting carbon
offsets, we acknowledge certain limitations inherent to its current framework. Primarily, the model
encounters challenges when handling non-stationary and high-dimensional time series data, thereby
requiring additional research to augment its effectiveness. Moreover, despite its robust performance
across multiple datasets, the model's applicability in real-world scenarios may be constrained by
variations in data quality and availability. Consequently, further investigation is warranted to refine
the model’s implementation in practical settings to more adequately fulfill pragmatic criteria.

In subsequent research, we intend to further enhance the model to bolster its performance and
robustness. Our efforts will focus on advanced feature engineering and meticulous data cleaning
methodologies pertinent to time series data, aimed at optimizing the handling of empirical datasets.
Moreover, we aim to investigate the application of the proposed model to practical challenges in the
domain of carbon neutrality, including the real-time surveillance of carbon emissions and the
optimization of carbon offset mechanisms. This study offers significant insights and techniques for
the advancement of carbon neutrality, with the potential to make a positive contribution to the
objectives of sustainable development. We are committed to pursuing further inquiries in this sphere
and to supporting endeavors that foster a more sustainable future.
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