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ABSTRACT 

Bridge crack detection is a critical task in structural health monitoring. Traditional manual 

inspection methods suffer from inefficiency and issues such as false positives and missed detections. 

However, existing automated models still face limitations in handling complex backgrounds and 

multi-scale cracks. Therefore, there is a need for a high-accuracy crack detection method. In this 

paper, we propose CrackDet-ViT, a bridge crack detection and segmentation model that integrates 

RegNet, ViT, and Mask R-CNN. The model uses RegNet to extract local features, ViT to capture 

global information, and Mask R-CNN for crack object detection and pixel-level segmentation, 

thereby improving detection accuracy and segmentation performance. Experimental results show that 

CrackDet-ViT achieves a mean Average Precision (mAP) of 87.5% on the SDNET2018 dataset and 

84.7% on the Kaggle - Crack Detection Challenge dataset, outperforming existing models. Overall, 

CrackDet-ViT demonstrates excellent performance and robustness, making it suitable for bridge 

crack detection in complex environments. 
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1. Introduction 

Bridges are subject to various factors over time, such as load-bearing stresses and environmental 

corrosion, which can lead to the formation of cracks that can jeopardize structural safety. Therefore, 

early detection and classification of cracks are crucial for bridge maintenance. Traditional detection 

methods mainly rely on manual inspections and sensor-based monitoring [1]. Manual Inspection is 

influenced by human subjectivity, resulting in low efficiency and inconsistent accuracy, while sensor-

based approaches, although capable of providing high-precision data, are costly, complex to deploy, 

and difficult to scale [2][3]. 

Deep learning has significantly advanced the automation of crack detection, with Convolutional 

Neural Networks (CNNs) excelling in image feature extraction and improving detection accuracy [4]. 

Despite these advancements, challenges remain [5]. CNNs primarily rely on local convolution 

operations, which limits their ability to capture the global structure of cracks, often leading to false 

positives or missed detections in complex backgrounds [6]. Object detection models can identify 

crack regions, but typically output only bounding boxes, lacking precise boundary information. 
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Semantic segmentation models offer pixel-level detection but often struggle with small cracks and 

noise robustness. Consequently, an effective solution must combine object detection and 

segmentation capabilities while enhancing global feature perception [7][8]. 

To address these challenges, we propose CrackDet-ViT, a bridge crack detection framework that 

integrates CNNs and Transformers, and employs Mask R-CNN for crack object detection and 

segmentation, thereby improving both accuracy and robustness [9]10]. The framework utilizes 

RegNet as the CNN backbone to extract local features and introduces ViT to model global features, 

enhancing crack shape perception. Additionally, Mask R-CNN combines Region Proposal Network 

(RPN) to generate candidate regions and a fully Convolutional Network (FCN) to predict crack masks, 

achieving pixel-level crack segmentation [11]. This approach not only identifies crack location and 

categories but also generates complete crack contours, significantly improving detection performance.  

The main contributions of this paper are as follows: 

• Proposed CrackDet-ViT: A framework that integrated local features from RegNet and global 

  features from ViT, enhancing the accuracy and robustness of crack detection. 

• Adopted Mask R-CNN for crack object detection and instance segmentation, enabling precise 

  localization and shape analysis. 

• Optimized feature fusion strategies: Introduced multi-scale feature fusion and attention 

   mechanisms to improve the model’s adaptability in complex environments. 

2. Related Work 

2.1 Traditional Methods of Economic Cycle Forecasting 

Traditional bridge crack detection methods mainly include manual inspection, image processing 

techniques, sensor monitoring, machine learning approaches, and early deep learning models 

[12][13][14]. Manual inspection relies on inspectors visually examining bridges or using tools to 

measure crack dimensions. However, this approach is highly subjective, inefficient, and prone to false 

positives and missed detections [15]. Image processing techniques can detect cracks under ideal 

conditions, but are highly sensitive to complex backgrounds and varying lighting conditions, limiting 

their generalization capability [16]. Sensor monitoring methods, such as strain gauges, fiber Bragg 

grating sensors, and ultrasonic sensors, provide high accuracy but are expensive to deploy, difficult 

to install, and not easily scalable [17]. Machine learning methods use manually extracted features for 

crack classification. While these methods improve detection automation to some extent, they heavily 

rely on feature engineering, which limits their generalization ability [18]. The rise of deep learning 

has advanced automatic crack detection, with early CNN models able to learn crack features 

automatically, avoiding manual feature engineering. However, these models have high computational 

complexity, tend to overfit small datasets, and limited capability in modeling crack geometrics [7]. 

The CrackDet-ViT model combines RegNet for local feature extraction, ViT for global feature 

capture, and both crack detection and pixel-level segmentation. It accurately identifies crack shapes 

and enhances robustness in complex backgrounds. This approach offers a comprehensive solution for 

bridge crack detection. 

2.2 The Application of Deep Learning in Crack Detection 

In recent years, numerous studies have explored deep learning techniques to improve crack 
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detection accuracy and robustness [19][20]. Deep CNN-based approaches automatically learn crack 

features from images to detect and classify cracks [21][22]. These methods perform well under simple 

conditions; however, their performance often degrades in complex backgrounds or noisy 

environments. Other methods use U-Net networks for semantic segmentation of cracks, predicting 

crack regions on a pixel-by-pixel basis. This allows for more accurate delineation of crack boundaries 

[23]. Especially in noisy scenes, where false positives or missed detections are more likely. 

Additionally, some research has applied object detection techniques to locate the positions of cracks 

for recognition [24]. These methods handle large cracks well, but their performance on accurately 

segmenting small cracks is subpar, and they only output bounding boxes, lacking fine-grained detail 

restoration. ResNet based architectures have also been applied to crack detection due to their deep 

hierarchical feature extraction capability [25]. Although ResNet improves representation learning, it 

still faces challenges in extracting fine crack details and maintaining robustness. Other approaches 

combine traditional image processing with deep learning by first extracting edge information of 

cracks and then applying deep learning for classification [26][27]. In addition, due to its deep network 

structure, ResNet can learn more hierarchical features. Some studies have applied it to crack detection, 

which has improved the ability of feature extraction, but still has shortcomings in crack detail 

extraction and robustness [28]. Another method combines traditional image processing techniques 

with deep learning, by first extracting edge information of cracks and then performing deep learning 

classification [29]. This type of method has improved the detection ability of small cracks, but its 

ability to suppress noise is weak, and the image processing part often reduces the end-to-end 

efficiency of the system [30]. 

The CrackDet-ViT leverages RegNet for local feature extraction and ViT for global information, 

achieving improved accuracy and robustness, particularly in complex environments, while delivering 

precise crack boundaries. 

2.3 The Application of Transformer in Computer Vision 

In recent years, Transformers have gained significant attention in computer vision tasks [31]. 

Initially, CNNs became the mainstream architecture in image tasks due to their ability to extract local 

features [32]. However, CNNs have limited capability in modeling long-range dependencies, which 

restricts their performance in complex visual tasks. To address this limitation, Transformers were 

introduced to the field of computer vision, especially the ViT model [33][34]. Other variants, such as 

the Swing Transformer and Hybrid Transformer, combine local convolutions with self-attention 

mechanisms, further enhancing computational efficiency and accuracy, and demonstrating strong 

generalization ability, particularly on large-scale datasets [35][36]. Additionally, DETR applies 

Transformers to object detection tasks, and through an end-to-end training strategy, it successfully 

reduces the complexity of candidate box generation in traditional object detection methods 

[37][38][39]. 

The CrackDet-ViT combines RegNet, ViT, and Mask R-CNN to achieve local-to-global feature 

fusion, improving crack detection performance in complex environments. ViT helps capture 

directional and morphological features of cracks. Compared to traditional CNN models, CrackDet-

ViT performs better in detecting small cracks and handling complex backgrounds. 
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3. Method 

3.1. Overview of Our Model 

The CrackDet-ViT model combines RegNet, ViT, and Mask R-CNN, aiming to improve the 

accuracy of bridge crack detection, classification, and pixel-level segmentation. The overall 

architecture of the model is shown in Figure 1. Through the organic integration of these three modules, 

CrackDet-ViT achieves a comprehensive processing flow from crack feature extraction to precise 

segmentation.  

 

Figure 1. The overall architecture of the CrackDet-ViT model 

 

RegNet, as the CNN backbone, is primarily responsible for extracting local features from the 

input image [40]. It learns the fundamental texture, edge, and shape information of cracks through 

efficient convolution operations and utilizes the Feature Pyramid Network (FPN) technique to extract 

features at multiple scales. This approach enhances the model's ability to detect cracks of varying 

sizes. Compared to traditional CNNs, RegNet's architecture is optimized for efficient local feature 

extraction and exhibits greater robustness in complex environments. The extracted local features are 

subsequently passed to the ViT module, which captures global information through a self-attention 

mechanism. This allows ViT to model crack direction and shape more effectively. Unlike traditional 

local convolution operations, ViT divides the image into patches and computes the relationships 

between them, improving the model's ability to capture the global shape of cracks, especially in 

complex backgrounds and long-range dependencies [41]. ViT helps improve the accuracy of crack 

detection, particularly in recognizing various crack shapes and locations. Mask R-CNN is employed 

for crack object detection and instance segmentation. It generates candidate regions for cracks using 

the RPN, performs RoI Align to ensure precise localization, and applies a FCN for pixel-level 

segmentation to produce accurate crack masks. This process accurately extracts crack shape and 

boundary information, enabling detection that is not limited to region localization but also includes 
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fine morphological details. CrackDet-ViT integrates the local features from RegNet, global features 

from ViT, and Mask R-CNN to achieve high-precision crack detection and segmentation. The 

collaborative function of multiple modules enhances the model's robustness in complex environments 

and ensures accurate crack shape extraction, providing a precise solution for automated bridge crack 

detection. 

3.2. Extracting Local Features of Cracks 

As one of the key components of the CrackDet-ViT model, RegNet is primarily responsible for 

extracting local crack features from the input image. This module learns fundamental textures, edges, 

and crack shapes through efficient convolution operations, and utilizes a Feature Pyramid Network 

(FPN) to extract multi-scale features. As illustrated in Figure 2, the RegNet architecture enhances 

computational efficiency through multiple convolution layers and depthwise separable convolutions, 

and strengthens its adaptability to cracks of different sizes by merging features at multiple levels. 

 

Figure 2. The structure of RegNet is used for local feature extraction. 

 

After the input image undergoes a series of convolution operations. These features are processed 

through deep convolutions and pointwise convolutions, which reduce computational complexity 

while retaining key local information. Through this approach, RegNet can extract local features of 

cracks in the image while maintaining high computational efficiency. Assuming the input image size 

is I, the convolution kernel is K, and the bias term is b, the output feature map O after convolution is 

defined as in (1). 

𝑂 = 𝐾 ∗ 𝐼 + 𝑏 [Formular 1] 

Furthermore, RegNet introduces the FPN technique during feature extraction to effectively fuse 

features at different scales, enhancing the model's ability to detect cracks at various sizes. Through 
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multi-level feature fusion, RegNet can better adapt to changes in crack sizes, particularly when the 

image contains cracks at multiple scales, allowing for more accurate localization of crack regions. 

Assuming the feature map at the l-th layer is 𝐹𝑙, with L representing the number of layers and 𝛼𝑙 

representing the weight coefficient of each feature map, the multi-scale feature map 𝐹𝑚𝑢𝑙𝑡𝑖 after FPN 

fusion as in (2). 

𝐹𝑚𝑢𝑙𝑡𝑖 = ∑𝐿
𝑙=1 𝛼𝑙𝐹𝑙 [Formular 2] 

To further improve computational efficiency, RegNet employs Depthwise Separable 

Convolution. Assuming the feature map of the input image is X, and the convolution kernels are 𝐾𝑑 

and 𝐾𝑝, the calculation process of depthwise separable convolution is defined as in (3). 

𝑋𝑑 = 𝐾𝑑 ∗ 𝑋,  𝑋𝑝 = 𝐾𝑝 ∗ 𝑋𝑑 [Formular 3] 

This method significantly reduces the computational load and improves feature extraction 

efficiency, making it particularly suitable for large-scale datasets and high-resolution images. 

RegNet's feature extraction module, while ensuring high computational efficiency, is able to 

capture detailed features of cracks, such as edges, textures, and shapes, providing high-quality local 

features for subsequent global feature modeling and crack segmentation. Finally, through residual 

connections, the stability of the gradients during the feature learning process is ensured, further 

enhancing the network performance. Assuming the input is X and the output is Y, the calculation 

formula for the residual connection is defined as in (4). 

𝑌 = 𝐹(𝑋) + 𝑋 [Formular 4] 

Through this design, the RegNet module fully leverages the local feature extraction capabilities 

of convolutional neural networks, while combining depthwise separable convolution and multi-scale 

fusion techniques to enhance the overall performance of crack detection tasks. 

3.3. Global Feature Modeling of Crack Images 

In the CrackDet-ViT model, the ViT module is responsible for global feature modeling of crack 

images, aiming to enhance the model's ability to perceive the overall shape, direction, and other long-

range dependencies of cracks. Figure 3 illustrates the architecture of the ViT module, which includes 

key steps such as Patch Embedding, Self-Attention, and Feature Fusion. 
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Figure 3. The structure of ViT is used for global feature modeling 

 

The ViT model divides the input image into multiple fixed-size patches. Assuming the input 

image size is 𝐻 ×𝑊 × 𝐶, it is divided into P patches of size 𝑃ℎ × 𝑃𝑤. Each patch is converted into a 

vector using Patch Embedding, where 𝐼𝑖  represents the 𝑖-th patch in the image, W is the learned 

weight matrix, b is the bias term, and 𝑥𝑖 is the embedded feature vector for the patch. This process 

maps the input image into a high-dimensional vector space, which facilitates further processing, as 

defined in (5). 

𝑥𝑖 = 𝐹𝑙𝑎𝑡𝑡𝑒𝑛(𝐼𝑖) ⋅ 𝑊 + 𝑏 [Formular 5] 

In the Self-Attention mechanism, ViT calculates the Query, Key, and Value for each input patch 

and uses this information to compute the relationship between every pair of patches. Q, K, and V 

denote the query, key, value matrices, respectively, and 𝑑𝑘 is the dimension of the key matrix. The 

Self-Attention computation formula is defined as in (6). 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
)𝑉 [Formular 6] 

After several Self-Attention operations, ViT extracts global features from the image through 

multiple Transformer encoder layers, obtaining a global context representation for each patch. These 

representations not only contain local information but also fuse global dependencies. At this stage, 

the output of ViT is a vector of length 𝑁 × 𝑑 , where N is the number of patches, and d is the 

embedding dimension. These global features are then passed into an MLP for further  processing. In 

the MLP, features undergo a series of nonlinear transformations through fully connected layers, where 

𝑊1 and 𝑊2 are weight matrices, 𝑏1 and 𝑏2 are bias terms, with ReLU as the activation function. The 

processing formula as in (7). 

𝑀𝐿𝑃(𝑥) = 𝑅𝑒𝐿𝑈(𝑥𝑊1 + 𝑏1)𝑊2 + 𝑏2 [Formular 7] 

Finally, the output of ViT is passed to the Mask R-CNN module for object detection and pixel-

level segmentation. This approach allows ViT to not only improve the accuracy of crack detection 

but also enhance the robustness of the model through global feature modeling, especially in complex 
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backgrounds or multi-scale crack scenarios, where it can better recognize the shape, direction, and 

location of cracks. 

3.4. Target Detection and Instance Segmentation of Cracks 

In the CrackDet-ViT model, the Mask R-CNN module handles both the crack object detection 

and instance segmentation tasks. Unlike traditional object detection methods, Mask R-CNN not only 

detects the location of cracks but also performs fine pixel-level segmentation, generating precise 

crack masks. Figure 4 presents the architecture of the Mask R-CNN module, clearly depicting the 

entire process from generating candidate regions, region alignment, to pixel-level segmentation. 

 

 

Figure 4. Structure of mask R-CNN for object detection and instance segmentation. 

 

The RPN generates candidate regions for cracks through a sliding window. The core goal of the 

RPN is to quickly generate potential crack regions from the input image and provide a bounding box 

for each candidate region. Assuming the input feature map is F, the RPN uses convolution operations 

to generate a set of anchor boxes and calculates the IoU between each anchor box and the ground 

truth crack region using the following formula as shown in (8). 

𝐼𝑜𝑈 =
𝐴𝑟𝑒𝑎−𝑜𝑓−𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛

𝐴𝑟𝑒𝑎−𝑜𝑓−𝑈𝑛𝑖𝑜𝑛
 [Formular 8] 

Based on this calculation, the RPN assigns a probability to each anchor box, indicating whether 

the anchor box contains the crack region, and generates crack candidate boxes. This process not only 

speeds up object localization but also effectively reduces computational load. 

Next, the Region of Interest (RoI) Align is used for candidate region alignment. Traditional RoI 

Pooling methods result in boundary information loss due to the quantization process. However, RoI 

Align avoids quantization errors by accurately computing the pixel values in each candidate region, 

allowing for more precise feature extraction. Let the candidate region be R; the output feature map 

after RoI Align is calculated by the following formula as shown in (9). 
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𝐹𝑎𝑙𝑖𝑔𝑛𝑒𝑑 = 𝑅𝑜𝑙𝐴𝑙𝑖𝑔𝑛(𝐹, 𝑅) [Formular 9] 

 

After candidate region alignment, the FCN is responsible for performing pixel-level 

segmentation on each candidate region and generating crack masks. The FCN processes the input 

feature map through a fully convolutional network, outputting a binary mask for each pixel's class 

prediction. For each candidate region R, the FCN output is a binary mask MR with shape 𝐻×𝑊, 

indicating whether each pixel within the region belongs to the crack area. The output process of the 

FCN can be expressed by the following formula as shown in (10). 

𝑀𝑅 = 𝜎(𝑊 ∗ 𝐹𝑎𝑙𝑖𝑔𝑛𝑒𝑑 + 𝑏) [Formular 10] 

Where W represents the convolution kernel, σ represents the activation function, and b 

represents the bias term. Finally, Mask R-CNN generates the complete morphological information 

for each crack region based on the output mask. 

Mask R-CNN plays a crucial role in CrackDet-ViT by effectively performing crack object 

detection and instance segmentation, helping the model detect crack locations more accurately in 

complex backgrounds while providing fine pixel-level segmentation. 

4. Experiment 

4.1 Datasets 

SDNET2018 and Kaggle Crack Detection Challenge were used to test and evaluate the 

performance of the CrackDet-ViT model. These datasets were chosen because they provide a diverse 

range of crack images, covering various crack types, lighting conditions, and background 

complexities, making them suitable for crack detection, classification, and pixel-level segmentation 

tasks. The evaluation using these datasets enables a comprehensive verification of the CrackDet-ViT 

model's robustness and accuracy in various complex environments.  

Table 1. Overview of Datasets Used in the Experiment. 

Dataset Name 
Number of 

Images 
Image Type Annotation Type 

Dataset 

Characteristics 

SDNET2018 12,000 images 
Bridge surface 

crack images 

Crack location, 

category, 

segmentation 

mask 

Contains cracks 

under different 

lighting and 

complex 

backgrounds 

Kaggle - Crack 

Detection 

Challenge 

2,000 images 
Road and bridge 

crack images 

Crack location, 

classification 

labels, pixel-level 

masks 

Contains cracks 

under complex 

backgrounds and 

various lighting 

conditions 

 

The SDNET2018 dataset is provided by NASA and contains crack images from different bridge 

surfaces [42]. The dataset offers crack images under varying lighting and complex background 
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conditions, making it an excellent resource for testing CrackDet-ViT on diverse crack shapes and 

complex environments. 

The Kaggle - Crack Detection Challenge is a publicly available dataset that includes crack 

images from roads and bridges under different backgrounds and lighting conditions [43]. The dataset 

provides bounding boxes and pixel-level labels for cracks, making it suitable for object detection and 

pixel-level segmentation tasks. 

4.2 Experimental Setup and Configuration 

Table 2. Hardware and Software Configuration for Experiments 

Component Specification 

GPU NVIDIA A100 (40GB VRAM) 

CPU AMD EPYC 7452 (32 cores) 

Memory 256GB DDR4 

Storage 4TB SSD 

Operating System Ubuntu 20.04 LTS 

Deep Learning Frameworks PyTorch 1.10, Detectron2 (Mask R-CNN) 

CUDA 11.2 

cuDNN 8.1 

Python Version 3.8 

 

The loss functions used during training included localization loss, classification loss, and mask 

loss, ensuring effective crack detection and segmentation. For dataset partitioning, 70% of the 

SDNET2018 dataset was used for training and 30% for testing, while 80% of the Kaggle Crack 

Detection Challenge dataset was used for training and 20% for testing. The hardware environment is 

summarized in Table 2. 

4.3 Evaluation Metric 

In this study, several evaluation metrics were used to comprehensively assess the performance 

of the CrackDet-ViT model in crack detection, classification, and pixel-level segmentation tasks, 

enabling accurate measurement of the model's detection accuracy, segmentation ability, and 

robustness [44]. 

The mean Average Precision (mAP) calculates the average value of AP (Average Precision) at 

different thresholds. AP reflects the balance between precision and recall at different IoU thresholds, 

where 𝐴𝑃𝑖 represents the average precision for the i-th category, and N is the number of categories. 

mAP provides a comprehensive performance evaluation of the model in multi-class crack detection 

tasks is defined as in (11). 

𝑚𝐴𝑃 =
1

𝑁
∑𝑁
𝑖=1 𝐴𝑃𝑖  [Formular 11] 

IoU is a key metric for evaluating object detection and image segmentation performance. It 

represents the ratio of the intersection to the union of the predicted and ground truth regions. A higher 

IoU indicates closer alignment between predictions and actual annotations. Let A and B denote the 

predicted and ground truth regions, respectively. The IoU is defined as in (12). 
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𝐼𝑜𝑈 =
𝐴𝑟𝑒𝑎′𝑜𝑓′𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛

𝐴𝑟𝑒𝑎′𝑜𝑓′𝑈𝑛𝑖𝑜𝑛
=

|𝐴∩𝐵|

|𝐴∪𝐵|
 [Formular 12] 

Precision measures the proportion of actual crack pixels among the pixels predicted as crack 

regions by the model. The higher the Precision, the fewer false positives the model generates in its 

predictions. TP represents the number of pixels correctly predicted as cracks, and FP represents the 

number of pixels incorrectly predicted as cracks. Higher Precision means the model has higher 

accuracy in locating crack regions as in (13). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 [Formular 13] 

Recall measures the proportion of actual crack regions correctly identified by the model. A 

higher Recall means the model can identify more true crack regions, but it may lead to more false 

positives. FN represents the number of crack regions missed by the model. Higher Recall means the 

model can capture as many crack regions as possible as in (14). 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 [Formular 14] 

Dice Coefficient is a metric for evaluating image segmentation accuracy, particularly suitable 

for pixel-level segmentation tasks. A and B represent the predicted and ground truth masks, 

respectively. The Dice Coefficient effectively measures the overlap between the model's predicted 

and actual crack regions, making it an important metric for assessing crack segmentation performance 

as in (15). 

𝐷𝑖𝑐𝑒𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =
2×|𝐴∩𝐵|

|𝐴|+|𝐵|
 [Formular 15] 

4.4 Comparative Experimental Results and Analysis 

In this section, we compare the performance of the CrackDet-ViT model with other mainstream 

models on two datasets, focusing on the comparison of five evaluation metrics: mAP, IoU, Precision, 

Recall, and Dice Coefficient. The comparison models include: YOLOv8, Faster R-CNN, 

DeepLabV3+, Mask R-CNN, and Swin Transformer. These models represent the cutting-edge 

technologies in object detection and segmentation, and most were proposed within the past three years, 

making them suitable benchmarks for validating the advantages of CrackDet-ViT. Table 3 presents 

the experimental results. 

Table 3. Comparison of model performance on two datasets. 

Model Dataset mAP (%) IoU (%) 
Precision 

(%) 
Recall (%) 

Dice 

Coefficient 

(%) 

CrackDet-

ViT 

SDNET2018 87.5 79.3 89.2 85.1 90.3 

Kaggle 

Challenge 
84.7 76.2 87.9 82.5 88.4 

Swin 

Transformer 

[45] 

SDNET2018 86.2 78.1 88.5 83.2 89.8 

Kaggle 

Challenge 
83.5 75.0 86.2 80.7 86.8 

YOLOv8[46] 
SDNET2018 81.5 73.4 84.9 78.2 85.4 

Kaggle 79.8 70.5 83.5 76.9 82.7 
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Challenge 

Faster R-

CNN [27] 

SDNET2018 83.4 74.2 86.3 80.6 87.5 

Kaggle 

Challenge 
80.9 72.4 84.8 78.7 85.6 

DeepLabV3+ 

[47] 

SDNET2018 82.8 75.3 85.5 79.0 86.2 

Kaggle 

Challenge 
80.1 70.8 83.9 76.5 84.3 

Mask R-CNN 

[48] 

SDNET2018 84.9 76.7 87.3 81.4 88.6 

Kaggle 

Challenge 
81.5 73.1 85.0 77.9 85.2 

 

 

 

Figure 5. The overall architecture of the CrackDet-ViT model 

 

As shown in Figure 5, the performance of each model on the two datasets is presented. On the 

SDNET2018 dataset, CrackDet-ViT achieves an mAP of 87.5%, which is an improvement of 

approximately 6% over YOLOv8 and about 4% over Faster R-CNN. This significant improvement 

indicates that CrackDet-ViT, while considering both detection accuracy and recall, offers higher 

average precision, making crack detection more accurate in complex backgrounds. Additionally, 

compared to DeepLabV3+ and Mask R-CNN, CrackDet-ViT also demonstrates a higher mAP, 

indicating better performance balance and robustness in crack detection tasks. On the Kaggle - Crack 

Detection Challenge dataset, CrackDet-ViT achieves an mAP of 84.7%, which is an improvement of 

about 5% over YOLOv8 and 1.2% over Swin Transformer. This result indicates that, even with a 

greater variety of crack types and more complex backgrounds, CrackDet-ViT can maintain high 

detection accuracy, fully demonstrating its advantages over existing state-of-the-art object detection 

models. For the IoU (Intersection over Union) metric, CrackDet-ViT achieves an IoU of 79.3% on 
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the SDNET2018 dataset, improving by approximately 5% over YOLOv8 and 4% over DeepLabV3+. 

This improvement highlights CrackDet-ViT’s advantage in crack segmentation tasks, as it can more 

accurately localize crack regions, thereby enhancing overall segmentation performance. Similarly, on 

the Kaggle Challenge dataset, CrackDet-ViT shows a 5% improvement in IoU compared to YOLOv8 

and Mask R-CNN, demonstrating its accuracy and robustness in crack segmentation tasks. In terms 

of Precision and Recall, CrackDet-ViT also shows significant improvements. Compared to YOLOv8, 

CrackDet-ViT’s Precision on the SDNET2018 dataset improves by about 4.3%, while Recall 

improves by 8.7%, indicating that CrackDet-ViT is more accurate in detecting and recognizing cracks 

while capturing a great number of true crack regions. Compared to Faster R-CNN and Mask R-CNN, 

CrackDet-ViT shows improvements in both precision and recall, further demonstrating its advantages 

in model balance and robustness. Regarding the Dice Coefficient, CrackDet-ViT demonstrates the 

most substantial improvement, particularly in crack segmentation accuracy. Compared to YOLOv8 

and Faster R-CNN, CrackDet-ViT improves by over 5% on the SDNET2018 dataset, indicating that 

it significantly enhances pixel-level segmentation accuracy and captures more precise crack contours. 

This provides CrackDet-ViT a clear advantage in complex backgrounds and multi-scale crack 

segmentation tasks. 

 

 

Figure 6. Comparison of accuracy trends with baseline for multiple models 

 

As shown in Figure 6, the MS-RL DeepSeek model surpasses all other comparison models 

across multiple evaluation metrics, particularly excelling in capturing long-term trends in economic 

cycles and predicting short-term fluctuations in financial markets. This indicates that MS-RL 
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DeepSeek can provide more accurate predictions and risk assessments in complex, dynamically 

changing economic environments. These results confirm the effectiveness of multi modal data fusion 

and decision optimization based on reinforcement learning and demonstrate its potential in 

applications related to economic and financial risk assessment. 

4.5 Ablation Experimental Results and Analysis 

In this section, we present the ablation study of CrackDet-ViT, where different modules of the 

model are systematically removed to assess the importance and effectiveness of each component [49]. 

These experiments were conducted on the SDNET2018 and Kaggle Crack Detection Challenge 

datasets, with a focus on the impact of removing individual modules: RegNet, ViT, and Mask R-

CNN. The results shown in table 4 highlight the importance of each module and demonstrate the 

contribution of the complete model to overall performance. 

Table 4. Ablation study results on SDNET2018 and kaggle - crack detection challenge dataset 

Model 

Variant 
Dataset mAP (%) IoU (%) 

Precision 

(%) 
Recall (%) 

Dice 

Coefficient 

(%) 

CrackDet-

ViT 

SDNET2018 87.5 79.3 89.2 85.1 90.3 

Kaggle 84.7 76.2 87.9 82.5 88.4 

w/o RegNet 
SDNET2018 84.1 75.2 86.5 80.8 86.4 

Kaggle 81.3 72.0 85.2 77.6 84.5 

w/o ViT 
SDNET2018 83.6 73.8 84.2 79.5 85.2 

Kaggle 80.8 70.4 83.8 75.9 83.2 

w/o Mask R-

CNN 

SDNET2018 82.4 72.4 83.0 78.1 84.6 

Kaggle 79.5 69.1 82.7 74.8 82.6 

 

 

Figure 7. The overall architecture of the CrackDet-ViT model 
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As shown in Figure 7, each module in the CrackDet-ViT model significantly contributes to its 

overall performance. Removing RegNet leads to a noticeable decline in all performance metrics. On 

the SDNET2018 and Kaggle Challenge datasets, the mAP drops by approximately 3.4% on both 

datasets, indicating that local feature extraction is crucial for detecting detailed crack characteristics. 

Both IoU and Dice Coefficient also decrease, highlighting the importance of accurate local feature 

representation in segmentation tasks. Similarly, when ViT is removed, performance declines. The 

mAP decreased by 3.9% on both the SDNET2018 and Kaggle Challenge datasets. This underscores 

the importance of global feature modeling in capturing the overall context of cracks, which helps the 

model detect and segment cracks in more complex scenarios. Removing Mask R-CNN, which is 

responsible for object detection and instance segmentation, also results in a performance drop, 

particularly in segmentation accuracy. The mAP decreases by approximately 5.1% on the 

SDNET2018 dataset and 5.2% on the Kaggle Challenge dataset, and both Dice Coefficient and IoU 

decrease significantly. This indicates that the ability to generate precise crack masks through instance 

segmentation is crucial for achieving high-quality segmentation results. When both RegNet and ViT 

are removed, the model's performance further declines, with mAP dropping by more than 6% on both 

datasets. This confirms that local feature extraction and global feature modeling play critical roles in 

the model's effectiveness. Finally, when both RegNet and Mask R-CNN are removed, performance 

declines significantly, with mAP dropping by more than 8% on SDNET2018 dataset and 8.4% on the 

Kaggle Challenge dataset. Without these two key modules, the model's ability to accurately detect 

cracks and perform fine-grained segmentation is severely compromised. 

By removing any two modules from RegNet, ViT, and Mask R-CNN, Tables 5 illustrates the 

extent of the contribution of these modules to the overall model performance. These results provide 

a deeper understanding of the impact of each module on the model's performance [50]. 

 

Table 5. Ablation study results on SDNET2018 and kaggle - crack detection challenge dataset 

(Removing Two or More Modules). 

Model 

Variant 
Dataset mAP (%) IoU (%) 

Precision 

(%) 
Recall (%) 

Dice 

Coefficient 

(%) 

CrackDet-ViT 
SDNET2018 87.5 79.3 89.2 85.1 90.3 

Kaggle 84.7 76.2 87.9 82.5 88.4 

w/o RegNet & 

ViT 

SDNET2018 80.9 70.1 80.4 75.3 82.9 

Kaggle 77.9 67.6 80.9 72.3 80.3 

w/o RegNet & 

Mask R-CNN 

SDNET2018 79.3 68.6 78.7 73.8 81.6 

Kaggle 76.3 65.9 78.3 70.4 78.9 

w/o ViT & 

Mask R-CNN 

SDNET2018 78.4 67.2 77.1 72.1 80.1 

Kaggle 75.6 64.2 77.2 69.2 77.4 
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Figure 8. The overall architecture of the CrackDet-ViT model. 

 

As shown in Figure 8 after removing two modules, the overall performance of CrackDet-ViT 

significantly declines. On the SDNET2018 dataset, after removing the RegNet and ViT modules, the 

mAP drops from 87.5% to 80.9%, and both IoU and Dice Coefficient show significant reductions. 

This indicates that RegNet and ViT are indispensable modules in the model, with the former 

responsible. Without these two modules, the model's accuracy in detecting cracks in complex 

backgrounds and across multiple scales is greatly reduced. Similarly, after removing the RegNet and 

Mask R-CNN modules, the mAP drops to 79.3%, and performance further weakens, validating the 

importance of Mask R-CNN in instance segmentation and fine crack detection. On the Kaggle - Crack 

Detection Challenge dataset, after removing RegNet and ViT, the mAP decreases to 77.9%, and the 

Dice Coefficient drops to 80.3%. This performance decline further demonstrates the crucial role of 

RegNet and ViT in the model's performance, especially in extracting crack details and modeling 

global information. Additionally, after removing ViT and Mask R-CNN, the mAP decreases to 75.6%, 

which further highlights the importance of Mask R-CNN in crack instance segmentation and detection. 

Without this module, the model cannot accurately segment crack regions. 

Overall, removing any two modules significantly reduces the performance of CrackDet-ViT, 

emphasizing the importance of each module in the overall model. The combination of RegNet and 

ViT enables the model to accurately extract local crack features while capturing the global shape of 

cracks, and Mask R-CNN ensures precise pixel-level segmentation. Therefore, the synergistic 

integration of all three modules provides CrackDet-ViT with excellent crack detection and 

segmentation performance. 

5. Conclusion and Discussion 

This paper introduces CrackDet-ViT, an innovative model for bridge crack detection and 

classification that combines RegNet, ViT, and Mask R-CNN to achieve high-precision detection and 

pixel-level segmentation. RegNet extracts local features, ViT models global information, and Mask 
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R-CNN performs instance segmentation, addressing key challenges in crack detection. 

CrackDet-ViT demonstrates excellent robustness across various crack types, complex 

backgrounds, and diverse lighting conditions. The model excels in detecting and segmenting cracks 

of different sizes, particularly in noisy and challenging environments. ViT improves generalization 

on unseen data, making the model more adaptable. By integrating advanced deep learning techniques, 

CrackDet-ViT delivers high accuracy and robustness, providing an effective solution for automated 

crack detection in complex environments. This makes CrackDet-ViT a powerful tool for 

infrastructure health monitoring with significant application potential. 

Looking ahead, further improvements in the CrackDet-ViT are possible. Future work may 

involve integrating multimodal data, such as combining RGB and infrared images, to enhance 

detection accuracy under varying environmental conditions. Additionally, incorporating self-

supervised learning could reduce reliance on labeled data. Optimizing the model for real-time crack 

detection, particularly for deployment edge devices, would further expand its applicability to large-

scale infrastructure monitoring. 
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