Journal of Intelligence Technology and Innovation (JITI), 2026, 4(1), 69-87.

Bridge Crack Detection and Classification Using CrackDet-ViT: A
Vision Transformer and CNN-Based Segmentation Framework

Jibin Jacob Mani*
*Kristu Jayanti (Deemed to be University), Bengaluru, India; jibin.jm@kristujayanti.com

*Corresponding Author: jibin.jm@kristujayanti.com
DOI: https://doi.org/10.30212/J1T1.202604.004
Submitted: Nov. 21, 2025 Accepted: Jan. 07, 2026

ABSTRACT

Bridge crack detection is a critical task in structural health monitoring. Traditional manual
inspection methods suffer from inefficiency and issues such as false positives and missed detections.
However, existing automated models still face limitations in handling complex backgrounds and
multi-scale cracks. Therefore, there is a need for a high-accuracy crack detection method. In this
paper, we propose CrackDet-ViT, a bridge crack detection and segmentation model that integrates
RegNet, ViT, and Mask R-CNN. The model uses RegNet to extract local features, ViT to capture
global information, and Mask R-CNN for crack object detection and pixel-level segmentation,
thereby improving detection accuracy and segmentation performance. Experimental results show that
CrackDet-ViT achieves a mean Average Precision (mAP) of 87.5% on the SDNET2018 dataset and
84.7% on the Kaggle - Crack Detection Challenge dataset, outperforming existing models. Overall,
CrackDet-ViT demonstrates excellent performance and robustness, making it suitable for bridge
crack detection in complex environments.
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1. Introduction

Bridges are subject to various factors over time, such as load-bearing stresses and environmental
corrosion, which can lead to the formation of cracks that can jeopardize structural safety. Therefore,
early detection and classification of cracks are crucial for bridge maintenance. Traditional detection
methods mainly rely on manual inspections and sensor-based monitoring [1]. Manual Inspection is
influenced by human subjectivity, resulting in low efficiency and inconsistent accuracy, while sensor-
based approaches, although capable of providing high-precision data, are costly, complex to deploy,
and difficult to scale [2][3].

Deep learning has significantly advanced the automation of crack detection, with Convolutional
Neural Networks (CNNs) excelling in image feature extraction and improving detection accuracy [4].
Despite these advancements, challenges remain [5]. CNNs primarily rely on local convolution
operations, which limits their ability to capture the global structure of cracks, often leading to false
positives or missed detections in complex backgrounds [6]. Object detection models can identify
crack regions, but typically output only bounding boxes, lacking precise boundary information.
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Semantic segmentation models offer pixel-level detection but often struggle with small cracks and
noise robustness. Consequently, an effective solution must combine object detection and
segmentation capabilities while enhancing global feature perception [7][8].

To address these challenges, we propose CrackDet-ViT, a bridge crack detection framework that
integrates CNNs and Transformers, and employs Mask R-CNN for crack object detection and
segmentation, thereby improving both accuracy and robustness [9]10]. The framework utilizes
RegNet as the CNN backbone to extract local features and introduces ViT to model global features,
enhancing crack shape perception. Additionally, Mask R-CNN combines Region Proposal Network
(RPN) to generate candidate regions and a fully Convolutional Network (FCN) to predict crack masks,
achieving pixel-level crack segmentation [11]. This approach not only identifies crack location and
categories but also generates complete crack contours, significantly improving detection performance.
The main contributions of this paper are as follows:

* Proposed CrackDet-ViT: A framework that integrated local features from RegNet and global

features from ViT, enhancing the accuracy and robustness of crack detection.

» Adopted Mask R-CNN for crack object detection and instance segmentation, enabling precise

localization and shape analysis.

* Optimized feature fusion strategies: Introduced multi-scale feature fusion and attention

mechanisms to improve the model’s adaptability in complex environments.

2. Related Work

2.1 Traditional Methods of Economic Cycle Forecasting

Traditional bridge crack detection methods mainly include manual inspection, image processing
techniques, sensor monitoring, machine learning approaches, and early deep learning models
[12][13][14]. Manual inspection relies on inspectors visually examining bridges or using tools to
measure crack dimensions. However, this approach is highly subjective, inefficient, and prone to false
positives and missed detections [15]. Image processing techniques can detect cracks under ideal
conditions, but are highly sensitive to complex backgrounds and varying lighting conditions, limiting
their generalization capability [16]. Sensor monitoring methods, such as strain gauges, fiber Bragg
grating sensors, and ultrasonic sensors, provide high accuracy but are expensive to deploy, difficult
to install, and not easily scalable [17]. Machine learning methods use manually extracted features for
crack classification. While these methods improve detection automation to some extent, they heavily
rely on feature engineering, which limits their generalization ability [18]. The rise of deep learning
has advanced automatic crack detection, with early CNN models able to learn crack features
automatically, avoiding manual feature engineering. However, these models have high computational
complexity, tend to overfit small datasets, and limited capability in modeling crack geometrics [7].

The CrackDet-ViT model combines RegNet for local feature extraction, ViT for global feature
capture, and both crack detection and pixel-level segmentation. It accurately identifies crack shapes
and enhances robustness in complex backgrounds. This approach offers a comprehensive solution for
bridge crack detection.

2.2 The Application of Deep Learning in Crack Detection
In recent years, numerous studies have explored deep learning techniques to improve crack
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detection accuracy and robustness [19][20]. Deep CNN-based approaches automatically learn crack
features from images to detect and classify cracks [21][22]. These methods perform well under simple
conditions; however, their performance often degrades in complex backgrounds or noisy
environments. Other methods use U-Net networks for semantic segmentation of cracks, predicting
crack regions on a pixel-by-pixel basis. This allows for more accurate delineation of crack boundaries
[23]. Especially in noisy scenes, where false positives or missed detections are more likely.
Additionally, some research has applied object detection techniques to locate the positions of cracks
for recognition [24]. These methods handle large cracks well, but their performance on accurately
segmenting small cracks is subpar, and they only output bounding boxes, lacking fine-grained detail
restoration. ResNet based architectures have also been applied to crack detection due to their deep
hierarchical feature extraction capability [25]. Although ResNet improves representation learning, it
still faces challenges in extracting fine crack details and maintaining robustness. Other approaches
combine traditional image processing with deep learning by first extracting edge information of
cracks and then applying deep learning for classification [26][27]. In addition, due to its deep network
structure, ResNet can learn more hierarchical features. Some studies have applied it to crack detection,
which has improved the ability of feature extraction, but still has shortcomings in crack detail
extraction and robustness [28]. Another method combines traditional image processing techniques
with deep learning, by first extracting edge information of cracks and then performing deep learning
classification [29]. This type of method has improved the detection ability of small cracks, but its
ability to suppress noise is weak, and the image processing part often reduces the end-to-end
efficiency of the system [30].

The CrackDet-ViT leverages RegNet for local feature extraction and ViT for global information,
achieving improved accuracy and robustness, particularly in complex environments, while delivering
precise crack boundaries.

2.3 The Application of Transformer in Computer Vision

In recent years, Transformers have gained significant attention in computer vision tasks [31].
Initially, CNNs became the mainstream architecture in image tasks due to their ability to extract local
features [32]. However, CNNs have limited capability in modeling long-range dependencies, which
restricts their performance in complex visual tasks. To address this limitation, Transformers were
introduced to the field of computer vision, especially the ViT model [33][34]. Other variants, such as
the Swing Transformer and Hybrid Transformer, combine local convolutions with self-attention
mechanisms, further enhancing computational efficiency and accuracy, and demonstrating strong
generalization ability, particularly on large-scale datasets [35][36]. Additionally, DETR applies
Transformers to object detection tasks, and through an end-to-end training strategy, it successfully
reduces the complexity of candidate box generation in traditional object detection methods
[37]1[38][39].

The CrackDet-ViT combines RegNet, ViT, and Mask R-CNN to achieve local-to-global feature
fusion, improving crack detection performance in complex environments. ViT helps capture
directional and morphological features of cracks. Compared to traditional CNN models, CrackDet-
ViT performs better in detecting small cracks and handling complex backgrounds.
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3. Method

3.1. Overview of Our Model

The CrackDet-ViT model combines RegNet, ViT, and Mask R-CNN, aiming to improve the
accuracy of bridge crack detection, classification, and pixel-level segmentation. The overall
architecture of the model is shown in Figure 1. Through the organic integration of these three modules,
CrackDet-ViT achieves a comprehensive processing flow from crack feature extraction to precise
segmentation.
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Figure 1. The overall architecture of the CrackDet-ViT model

RegNet, as the CNN backbone, is primarily responsible for extracting local features from the
input image [40]. It learns the fundamental texture, edge, and shape information of cracks through
efficient convolution operations and utilizes the Feature Pyramid Network (FPN) technique to extract
features at multiple scales. This approach enhances the model's ability to detect cracks of varying
sizes. Compared to traditional CNNs, RegNet's architecture is optimized for efficient local feature
extraction and exhibits greater robustness in complex environments. The extracted local features are
subsequently passed to the ViT module, which captures global information through a self-attention
mechanism. This allows ViT to model crack direction and shape more effectively. Unlike traditional
local convolution operations, VIiT divides the image into patches and computes the relationships
between them, improving the model's ability to capture the global shape of cracks, especially in
complex backgrounds and long-range dependencies [41]. ViT helps improve the accuracy of crack
detection, particularly in recognizing various crack shapes and locations. Mask R-CNN is employed
for crack object detection and instance segmentation. It generates candidate regions for cracks using
the RPN, performs Rol Align to ensure precise localization, and applies a FCN for pixel-level
segmentation to produce accurate crack masks. This process accurately extracts crack shape and
boundary information, enabling detection that is not limited to region localization but also includes
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fine morphological details. CrackDet-ViT integrates the local features from RegNet, global features
from ViT, and Mask R-CNN to achieve high-precision crack detection and segmentation. The
collaborative function of multiple modules enhances the model's robustness in complex environments
and ensures accurate crack shape extraction, providing a precise solution for automated bridge crack
detection.

3.2. Extracting Local Features of Cracks

As one of the key components of the CrackDet-ViT model, RegNet is primarily responsible for
extracting local crack features from the input image. This module learns fundamental textures, edges,
and crack shapes through efficient convolution operations, and utilizes a Feature Pyramid Network
(FPN) to extract multi-scale features. As illustrated in Figure 2, the RegNet architecture enhances
computational efficiency through multiple convolution layers and depthwise separable convolutions,
and strengthens its adaptability to cracks of different sizes by merging features at multiple levels.
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Figure 2. The structure of RegNet is used for local feature extraction.

After the input image undergoes a series of convolution operations. These features are processed
through deep convolutions and pointwise convolutions, which reduce computational complexity
while retaining key local information. Through this approach, RegNet can extract local features of
cracks in the image while maintaining high computational efficiency. Assuming the input image size
is 1, the convolution kernel is K, and the bias term is b, the output feature map O after convolution is
defined as in (1).

O=Kx*I+b [Formular 1]

Furthermore, RegNet introduces the FPN technique during feature extraction to effectively fuse
features at different scales, enhancing the model's ability to detect cracks at various sizes. Through
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multi-level feature fusion, RegNet can better adapt to changes in crack sizes, particularly when the
image contains cracks at multiple scales, allowing for more accurate localization of crack regions.
Assuming the feature map at the I-th layer is F;, with L representing the number of layers and «;
representing the weight coefficient of each feature map, the multi-scale feature map F,,,,;¢; after FPN
fusion as in (2).

Fouiti = 2veq aiF; [Formular 2]

To further improve computational efficiency, RegNet employs Depthwise Separable
Convolution. Assuming the feature map of the input image is X, and the convolution kernels are K,
and K, the calculation process of depthwise separable convolution is defined as in (3).

Xa=Kg*X, X,=K,*Xq4 [Formular 3]

This method significantly reduces the computational load and improves feature extraction
efficiency, making it particularly suitable for large-scale datasets and high-resolution images.

RegNet's feature extraction module, while ensuring high computational efficiency, is able to
capture detailed features of cracks, such as edges, textures, and shapes, providing high-quality local
features for subsequent global feature modeling and crack segmentation. Finally, through residual
connections, the stability of the gradients during the feature learning process is ensured, further
enhancing the network performance. Assuming the input is X and the output is Y, the calculation
formula for the residual connection is defined as in (4).

Y=FX)+X [Formular 4]

Through this design, the RegNet module fully leverages the local feature extraction capabilities
of convolutional neural networks, while combining depthwise separable convolution and multi-scale
fusion techniques to enhance the overall performance of crack detection tasks.

3.3. Global Feature Modeling of Crack Images

In the CrackDet-ViT model, the ViT module is responsible for global feature modeling of crack
images, aiming to enhance the model's ability to perceive the overall shape, direction, and other long-
range dependencies of cracks. Figure 3 illustrates the architecture of the ViT module, which includes
key steps such as Patch Embedding, Self-Attention, and Feature Fusion.
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Figure 3. The structure of ViT is used for global feature modeling

The VIT model divides the input image into multiple fixed-size patches. Assuming the input
image size is H X W x C, it is divided into P patches of size P, X B, . Each patch is converted into a
vector using Patch Embedding, where I; represents the i-th patch in the image, W is the learned
weight matrix, b is the bias term, and x; is the embedded feature vector for the patch. This process
maps the input image into a high-dimensional vector space, which facilitates further processing, as
defined in (5).

x; = Flatten(l;)-W + b [Formular 5]

In the Self-Attention mechanism, VIiT calculates the Query, Key, and Value for each input patch
and uses this information to compute the relationship between every pair of patches. Q, K, and V
denote the query, key, value matrices, respectively, and d,, is the dimension of the key matrix. The
Self-Attention computation formula is defined as in (6).

T

Attention(Q,K,V) = softmax 2\ y Formular 6
Jd
k

After several Self-Attention operations, ViT extracts global features from the image through
multiple Transformer encoder layers, obtaining a global context representation for each patch. These
representations not only contain local information but also fuse global dependencies. At this stage,
the output of VIT is a vector of length N x d, where N is the number of patches, and d is the
embedding dimension. These global features are then passed into an MLP for further processing. In
the MLP, features undergo a series of nonlinear transformations through fully connected layers, where
W, and W, are weight matrices, b; and b, are bias terms, with ReL.U as the activation function. The
processing formula as in (7).

MLP(x) = ReLU(xW; + b;)W, + b, [Formular 7]

Finally, the output of VIT is passed to the Mask R-CNN module for object detection and pixel-
level segmentation. This approach allows VIiT to not only improve the accuracy of crack detection
but also enhance the robustness of the model through global feature modeling, especially in complex
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backgrounds or multi-scale crack scenarios, where it can better recognize the shape, direction, and
location of cracks.

3.4. Target Detection and Instance Segmentation of Cracks

In the CrackDet-ViT model, the Mask R-CNN module handles both the crack object detection
and instance segmentation tasks. Unlike traditional object detection methods, Mask R-CNN not only
detects the location of cracks but also performs fine pixel-level segmentation, generating precise
crack masks. Figure 4 presents the architecture of the Mask R-CNN module, clearly depicting the
entire process from generating candidate regions, region alignment, to pixel-level segmentation.

Region
Proposal

Network
‘ (RPN)
g i
\ : RolI Align . .
e V Conv Conv = |
% Fully Convolutional Network (FCN)

Convolutional Layers

Figure 4. Structure of mask R-CNN for object detection and instance segmentation.

The RPN generates candidate regions for cracks through a sliding window. The core goal of the
RPN is to quickly generate potential crack regions from the input image and provide a bounding box
for each candidate region. Assuming the input feature map is F, the RPN uses convolution operations
to generate a set of anchor boxes and calculates the loU between each anchor box and the ground
truth crack region using the following formula as shown in (8).

IoU =

Area—of—Intersection

[Formular 8]

Area—of—-Union

Based on this calculation, the RPN assigns a probability to each anchor box, indicating whether
the anchor box contains the crack region, and generates crack candidate boxes. This process not only
speeds up object localization but also effectively reduces computational load.

Next, the Region of Interest (Rol) Align is used for candidate region alignment. Traditional Rol
Pooling methods result in boundary information loss due to the quantization process. However, Rol
Align avoids quantization errors by accurately computing the pixel values in each candidate region,
allowing for more precise feature extraction. Let the candidate region be R; the output feature map
after Rol Align is calculated by the following formula as shown in (9).
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Faiignea = RolAlign(F,R) [Formular 9]

After candidate region alignment, the FCN is responsible for performing pixel-level
segmentation on each candidate region and generating crack masks. The FCN processes the input
feature map through a fully convolutional network, outputting a binary mask for each pixel's class
prediction. For each candidate region R, the FCN output is a binary mask MR with shape HxW,
indicating whether each pixel within the region belongs to the crack area. The output process of the
FCN can be expressed by the following formula as shown in (10).

Mg = o(W  Fajigneqa + b) [Formular 10]

Where W represents the convolution kernel, ¢ represents the activation function, and b
represents the bias term. Finally, Mask R-CNN generates the complete morphological information
for each crack region based on the output mask.

Mask R-CNN plays a crucial role in CrackDet-ViT by effectively performing crack object
detection and instance segmentation, helping the model detect crack locations more accurately in
complex backgrounds while providing fine pixel-level segmentation.

4. Experiment

4.1 Datasets

SDNET2018 and Kaggle Crack Detection Challenge were used to test and evaluate the
performance of the CrackDet-ViT model. These datasets were chosen because they provide a diverse
range of crack images, covering various crack types, lighting conditions, and background
complexities, making them suitable for crack detection, classification, and pixel-level segmentation
tasks. The evaluation using these datasets enables a comprehensive verification of the CrackDet-ViT
model's robustness and accuracy in various complex environments.

Table 1. Overview of Datasets Used in the Experiment.

Number of . Dataset
Dataset Name Image Type Annotation Type -
Images Characteristics

Contains cracks

Crack location, .
under different

Bridge surface category,
SDNET2018 12,000 images J . J y lighting and
crack images segmentation
complex
mask
backgrounds

Contains cracks

Crack location,
under complex

Kaggle - Crack

. . Road and bridge classification
Detection 2,000 images ) ) backgrounds and
crack images labels, pixel-level . .
Challenge masks various lighting

conditions

The SDNET2018 dataset is provided by NASA and contains crack images from different bridge
surfaces [42]. The dataset offers crack images under varying lighting and complex background
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'conditions, making it an excellent resource for testing CrackDet-ViT on diverse crack shapes and
complex environments.

The Kaggle - Crack Detection Challenge is a publicly available dataset that includes crack
images from roads and bridges under different backgrounds and lighting conditions [43]. The dataset
provides bounding boxes and pixel-level labels for cracks, making it suitable for object detection and
pixel-level segmentation tasks.

4.2 Experimental Setup and Configuration

Table 2. Hardware and Software Configuration for Experiments

Component Specification
GPU NVIDIA A100 (40GB VRAM)
CPU AMD EPYC 7452 (32 cores)
Memory 256GB DDR4
Storage 4TB SSD
Operating System Ubuntu 20.04 LTS
Deep Learning Frameworks PyTorch 1.10, Detectron2 (Mask R-CNN)
CUDA 11.2
cuDNN 8.1
Python Version 3.8

The loss functions used during training included localization loss, classification loss, and mask
loss, ensuring effective crack detection and segmentation. For dataset partitioning, 70% of the
SDNET2018 dataset was used for training and 30% for testing, while 80% of the Kaggle Crack
Detection Challenge dataset was used for training and 20% for testing. The hardware environment is
summarized in Table 2.

4.3 Evaluation Metric

In this study, several evaluation metrics were used to comprehensively assess the performance
of the CrackDet-ViT model in crack detection, classification, and pixel-level segmentation tasks,
enabling accurate measurement of the model's detection accuracy, segmentation ability, and
robustness [44].

The mean Average Precision (mAP) calculates the average value of AP (Average Precision) at
different thresholds. AP reflects the balance between precision and recall at different loU thresholds,
where AP; represents the average precision for the i-th category, and N is the number of categories.
mMAP provides a comprehensive performance evaluation of the model in multi-class crack detection
tasks is defined as in (11).

mAP = %Z?’zl AP; [Formular 11]
loU is a key metric for evaluating object detection and image segmentation performance. It
represents the ratio of the intersection to the union of the predicted and ground truth regions. A higher

loU indicates closer alignment between predictions and actual annotations. Let A and B denote the
predicted and ground truth regions, respectively. The loU is defined as in (12).
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Arearofrintersection _ |ANB|
ArearofrUnion o |AUB|

Precision measures the proportion of actual crack pixels among the pixels predicted as crack
regions by the model. The higher the Precision, the fewer false positives the model generates in its
predictions. TP represents the number of pixels correctly predicted as cracks, and FP represents the
number of pixels incorrectly predicted as cracks. Higher Precision means the model has higher
accuracy in locating crack regions as in (13).

Precision = — [Formular 13]
TP+FP

IoU = [Formular 12]

Recall measures the proportion of actual crack regions correctly identified by the model. A
higher Recall means the model can identify more true crack regions, but it may lead to more false
positives. FN represents the number of crack regions missed by the model. Higher Recall means the
model can capture as many crack regions as possible as in (14).

Recall = — [Formular 14]
TP+FN

Dice Coefficient is a metric for evaluating image segmentation accuracy, particularly suitable
for pixel-level segmentation tasks. A and B represent the predicted and ground truth masks,
respectively. The Dice Coefficient effectively measures the overlap between the model's predicted
and actual crack regions, making it an important metric for assessing crack segmentation performance
as in (15).

2X|ANB|

DiceCoefficient =
1 |Al+|B|

[Formular 15]

4.4 Comparative Experimental Results and Analysis

In this section, we compare the performance of the CrackDet-ViT model with other mainstream
models on two datasets, focusing on the comparison of five evaluation metrics: mAP, loU, Precision,
Recall, and Dice Coefficient. The comparison models include: YOLOvVS8, Faster R-CNN,
DeepLabV3+, Mask R-CNN, and Swin Transformer. These models represent the cutting-edge
technologies in object detection and segmentation, and most were proposed within the past three years,
making them suitable benchmarks for validating the advantages of CrackDet-ViT. Table 3 presents
the experimental results.

Table 3. Comparison of model performance on two datasets.

Dice
Precision ..
Model Dataset MAP (%) loU (%) Recall (%) Coefficient
(%)
(%)
SDNET2018 87.5 79.3 89.2 85.1 90.3
CrackDet- Kagale
ViT 99 84.7 76.2 87.9 82.5 88.4
Challenge
Swin SDNET2018 86.2 78.1 88.5 83.2 89.8
Transformer Kaggle
83.5 75.0 86.2 80.7 86.8
[45] Challenge
SDNET2018 81.5 73.4 84.9 78.2 85.4
YOLOv8[46]
Kaggle 79.8 70.5 83.5 76.9 82.7
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Challenge
SDNET2018 83.4 74.2 86.3 80.6 87.5
Faster R- Kaaale
CNN [27] 99 80.9 72.4 84.8 78.7 85.6
Challenge
SDNET2018 82.8 75.3 85.5 79.0 86.2
DeepLabV3+ Kaadle
[47] 499 80.1 70.8 83.9 76.5 84.3
Challenge
SDNET?2018 84.9 76.7 87.3 81.4 88.6
Mask R-CNN Kaaale
[48] g9 815 73.1 85.0 77.9 85.2
Challenge
CrackDet-ViT Performance Swin Transformer Performance YOLOv8 Performance
g 40 gw g ::
Faster R-Clslniltr::rformance DeepLabV;‘itr::rformamce Mask R-CNNII\EIt;:rformance

mmm SDNET2018 N SDNET2018 mmm SDNET2018
mm Kaggle Challenge 80 s Kaggle Challenge mmm Kaggle Challenge

Percentage

Figure 5. The overall architecture of the CrackDet-ViT model

As shown in Figure 5, the performance of each model on the two datasets is presented. On the
SDNET2018 dataset, CrackDet-ViT achieves an mAP of 87.5%, which is an improvement of
approximately 6% over YOLOV8 and about 4% over Faster R-CNN. This significant improvement
indicates that CrackDet-ViT, while considering both detection accuracy and recall, offers higher
average precision, making crack detection more accurate in complex backgrounds. Additionally,
compared to DeepLabV3+ and Mask R-CNN, CrackDet-ViT also demonstrates a higher mAP,
indicating better performance balance and robustness in crack detection tasks. On the Kaggle - Crack
Detection Challenge dataset, CrackDet-ViT achieves an mAP of 84.7%, which is an improvement of
about 5% over YOLOV8 and 1.2% over Swin Transformer. This result indicates that, even with a
greater variety of crack types and more complex backgrounds, CrackDet-ViT can maintain high
detection accuracy, fully demonstrating its advantages over existing state-of-the-art object detection
models. For the loU (Intersection over Union) metric, CrackDet-ViT achieves an loU of 79.3% on

80



Journal of Intelligence Technology and Innovation (JITI), 2026, 4(1), 69-87.

the SDNET2018 dataset, improving by approximately 5% over YOLOvV8 and 4% over DeepLabV3+.
This improvement highlights CrackDet-ViT’s advantage in crack segmentation tasks, as it can more
accurately localize crack regions, thereby enhancing overall segmentation performance. Similarly, on
the Kaggle Challenge dataset, CrackDet-ViT shows a 5% improvement in loU compared to YOLOV8
and Mask R-CNN, demonstrating its accuracy and robustness in crack segmentation tasks. In terms
of Precision and Recall, CrackDet-ViT also shows significant improvements. Compared to YOLOVS,
CrackDet-ViT’s Precision on the SDNET2018 dataset improves by about 4.3%, while Recall
improves by 8.7%, indicating that CrackDet-ViT is more accurate in detecting and recognizing cracks
while capturing a great number of true crack regions. Compared to Faster R-CNN and Mask R-CNN,
CrackDet-ViT shows improvements in both precision and recall, further demonstrating its advantages
in model balance and robustness. Regarding the Dice Coefficient, CrackDet-ViT demonstrates the
most substantial improvement, particularly in crack segmentation accuracy. Compared to YOLOVS8
and Faster R-CNN, CrackDet-ViT improves by over 5% on the SDNET2018 dataset, indicating that
it significantly enhances pixel-level segmentation accuracy and captures more precise crack contours.
This provides CrackDet-ViT a clear advantage in complex backgrounds and multi-scale crack
segmentation tasks.

Figure 6. Comparison of accuracy trends with baseline for multiple models

As shown in Figure 6, the MS-RL DeepSeek model surpasses all other comparison models
across multiple evaluation metrics, particularly excelling in capturing long-term trends in economic
cycles and predicting short-term fluctuations in financial markets. This indicates that MS-RL
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'DeepSeek can provide more accurate predictions and risk assessments in complex, dynamically
changing economic environments. These results confirm the effectiveness of multi modal data fusion
and decision optimization based on reinforcement learning and demonstrate its potential in
applications related to economic and financial risk assessment.

4.5 Ablation Experimental Results and Analysis

In this section, we present the ablation study of CrackDet-ViT, where different modules of the
model are systematically removed to assess the importance and effectiveness of each component [49].
These experiments were conducted on the SDNET2018 and Kaggle Crack Detection Challenge
datasets, with a focus on the impact of removing individual modules: RegNet, ViT, and Mask R-
CNN. The results shown in table 4 highlight the importance of each module and demonstrate the
contribution of the complete model to overall performance.

Table 4. Ablation study results on SDNET2018 and kaggle - crack detection challenge dataset

Model Precision DI.Ce.
. Dataset MAP (%) loU (%) Recall (%) Coefficient
Variant (%)
(%)
CrackDet- SDNET2018 87.5 79.3 89.2 85.1 90.3
ViT Kaggle 84.7 76.2 87.9 82.5 88.4
SDNET?2018 84.1 75.2 86.5 80.8 86.4
w/o RegNet
Kaggle 81.3 72.0 85.2 77.6 84.5
) SDNET2018 83.6 73.8 84.2 79.5 85.2
w/o ViT
Kaggle 80.8 70.4 83.8 75.9 83.2
w/o Mask R- SDNET2018 82.4 724 83.0 78.1 84.6
CNN Kaggle 79.5 69.1 82.7 74.8 82.6

95

Datasets
I SDNET2018
mmm Kaggle - Crack Detection Challenge

Performance (%)

MAP (%) loU (%) Precision (%) Recall (%) Dice Coefficient (%)

Figure 7. The overall architecture of the CrackDet-ViT model
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As shown in Figure 7, each module in the CrackDet-ViT model significantly contributes to its
overall performance. Removing RegNet leads to a noticeable decline in all performance metrics. On
the SDNET2018 and Kaggle Challenge datasets, the mAP drops by approximately 3.4% on both
datasets, indicating that local feature extraction is crucial for detecting detailed crack characteristics.
Both IoU and Dice Coefficient also decrease, highlighting the importance of accurate local feature
representation in segmentation tasks. Similarly, when ViT is removed, performance declines. The
mMAP decreased by 3.9% on both the SDNET2018 and Kaggle Challenge datasets. This underscores
the importance of global feature modeling in capturing the overall context of cracks, which helps the
model detect and segment cracks in more complex scenarios. Removing Mask R-CNN, which is
responsible for object detection and instance segmentation, also results in a performance drop,
particularly in segmentation accuracy. The mAP decreases by approximately 5.1% on the
SDNET2018 dataset and 5.2% on the Kaggle Challenge dataset, and both Dice Coefficient and loU
decrease significantly. This indicates that the ability to generate precise crack masks through instance
segmentation is crucial for achieving high-quality segmentation results. When both RegNet and ViT
are removed, the model's performance further declines, with mAP dropping by more than 6% on both
datasets. This confirms that local feature extraction and global feature modeling play critical roles in
the model's effectiveness. Finally, when both RegNet and Mask R-CNN are removed, performance
declines significantly, with mAP dropping by more than 8% on SDNET2018 dataset and 8.4% on the
Kaggle Challenge dataset. Without these two key modules, the model's ability to accurately detect
cracks and perform fine-grained segmentation is severely compromised.

By removing any two modules from RegNet, ViT, and Mask R-CNN, Tables 5 illustrates the
extent of the contribution of these modules to the overall model performance. These results provide
a deeper understanding of the impact of each module on the model's performance [50].

Table 5. Ablation study results on SDNET2018 and kaggle - crack detection challenge dataset
(Removing Two or More Modules).

Dice
Model Precision ..
. Dataset mAP (%)  loU (%) Recall (%) Coefficient

Variant (%)

(%)

. SDNET2018 87.5 79.3 89.2 85.1 90.3

CrackDet-ViT

Kaggle 84.7 76.2 87.9 82.5 88.4

w/o RegNet & SDNET2018 80.9 70.1 80.4 75.3 82.9

ViT Kaggle 77.9 67.6 80.9 72.3 80.3

w/o RegNet & SDNET2018 79.3 68.6 78.7 73.8 81.6

Mask R-CNN Kaggle 76.3 65.9 78.3 70.4 78.9

w/oViT & SDNET2018 78.4 67.2 77.1 72.1 80.1

Mask R-CNN Kaggle 75.6 64.2 77.2 69.2 77.4
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Figure 8. The overall architecture of the CrackDet-ViT model.

As shown in Figure 8 after removing two modules, the overall performance of CrackDet-ViT
significantly declines. On the SDNET2018 dataset, after removing the RegNet and ViT modules, the
mAP drops from 87.5% to 80.9%, and both loU and Dice Coefficient show significant reductions.
This indicates that RegNet and VIT are indispensable modules in the model, with the former
responsible. Without these two modules, the model's accuracy in detecting cracks in complex
backgrounds and across multiple scales is greatly reduced. Similarly, after removing the RegNet and
Mask R-CNN modules, the mAP drops to 79.3%, and performance further weakens, validating the
importance of Mask R-CNN in instance segmentation and fine crack detection. On the Kaggle - Crack
Detection Challenge dataset, after removing RegNet and ViT, the mAP decreases to 77.9%, and the
Dice Coefficient drops to 80.3%. This performance decline further demonstrates the crucial role of
RegNet and ViIT in the model's performance, especially in extracting crack details and modeling
global information. Additionally, after removing ViT and Mask R-CNN, the mAP decreases to 75.6%,
which further highlights the importance of Mask R-CNN in crack instance segmentation and detection.
Without this module, the model cannot accurately segment crack regions.

Overall, removing any two modules significantly reduces the performance of CrackDet-ViT,
emphasizing the importance of each module in the overall model. The combination of RegNet and
ViT enables the model to accurately extract local crack features while capturing the global shape of
cracks, and Mask R-CNN ensures precise pixel-level segmentation. Therefore, the synergistic
integration of all three modules provides CrackDet-ViT with excellent crack detection and
segmentation performance.

5. Conclusion and Discussion

This paper introduces CrackDet-ViT, an innovative model for bridge crack detection and
classification that combines RegNet, ViT, and Mask R-CNN to achieve high-precision detection and
pixel-level segmentation. RegNet extracts local features, ViT models global information, and Mask
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R-CNN performs instance segmentation, addressing key challenges in crack detection.

CrackDet-ViT demonstrates excellent robustness across various crack types, complex
backgrounds, and diverse lighting conditions. The model excels in detecting and segmenting cracks
of different sizes, particularly in noisy and challenging environments. ViT improves generalization
on unseen data, making the model more adaptable. By integrating advanced deep learning techniques,
CrackDet-ViT delivers high accuracy and robustness, providing an effective solution for automated
crack detection in complex environments. This makes CrackDet-ViT a powerful tool for
infrastructure health monitoring with significant application potential.

Looking ahead, further improvements in the CrackDet-ViT are possible. Future work may
involve integrating multimodal data, such as combining RGB and infrared images, to enhance
detection accuracy under varying environmental conditions. Additionally, incorporating self-
supervised learning could reduce reliance on labeled data. Optimizing the model for real-time crack
detection, particularly for deployment edge devices, would further expand its applicability to large-
scale infrastructure monitoring.
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