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ABSTRACT 

One popular covariance analysis methodology, canonical correlation analysis, is not primarily 

intended for multivariate multiple time-dependent data structures that may be appropriately divided 

into two response and predictor variables groups. This means that conventional canonical correlation 

analysis does not yield practical results for such data problems. This study, therefore, designs and 

implements a grouping scheme discriminant canonical correlation analysis to handle this problem so 

that the time effect is adequately captured in the computation of the correlation coefficient between 

the two sets of variables. We also show how multiple discriminant analyses obtain the ideal value. 

This process is known as grouping scheme discriminant canonical correlation analysis in this study. 

Therefore, the grouping scheme discriminant canonical correlation analysis is a method designed to 

handle time-dependent multivariate data efficiently by integrating the time effect into the canonical 

correlation through discriminant analysis. Based on data on six weather conditions, the 

demonstrations show that the correlation coefficient between heating and cooling sets of weather 

conditions varies at different time points, and that the overall correlations are higher than that 

obtained from data assumed to be time-independent. The detection techniques for multiple 

discriminant analysis and the currently used canonical correlation analysis are compared in this paper. 

The results are validated through simulation and real performance review. According to the findings, 

determining the genuine correlation between the two sets of variables with time-dependent structure 

is significantly improved by seven-group discriminant analysis. Furthermore, seven-group 

discriminant analysis yielded the best results for the combination method based on multiple 

discriminant analysis and conventional canonical correlation analysis. It has been noted that the time 

impact is successfully incorporated into the calculation of the canonical correlation when the 

grouping scheme is used in discriminant canonical correlation analysis. The results finally show that 
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incorporating the time effect into canonical correlation analysis achieves a more reasonable 

relationship between subset variables within the data.  

 

Keywords: Canonical correlation, Canonical discriminant function, Grouping scheme, Time-

dependent multivariate data, Weather conditions.  

1. Introduction    

Canonical correlation analysis (CCA) is one covariance analysis technique used in various 

disciplines to examine the relationship between a set of response variables, Y and a set of predictor 

variables, X, that make up the same dataset. A variety of fields have used CCA in several 

applications. The goal of CCA is to ascertain whether the predictor set of variables has an impact on 

the response sets of variables [1]. It has been noticed that CCA has drawn a lot of interest as a potent 

approach for fusing multimodal features [2]. Like that of regression, the aim of CCA is to measure 

the strength of the link between the two sets of data [3, 4]. It is comparable to factor analysis for 

constructing variable composites. It is also similar to discriminant analysis in that it can generate 

independent dimensions with the aim of obtaining the highest correlation between the dimensions for 

each set of variables [5].  

Given two interrelated random vectors /

21 ),...,,( pYYY=Y and /

21 ),...,,( qXXX=X , assume for 

convenience, that qp  [6]. CCA combines the two new variables provided by the linear 

combinations: Y
/

iiU =  and X
/

jjV = , such that the correlation between the two linear functions 

iU  and 
jV  is maximized, where, /

21 ),...,,( ipiii  = and /

21 ),...,,( jqjjj  = are the coefficient 

vectors of  Y and X, respectively.  This conventional objective of CCA is, however, independent of 

the possible time effect. 

The basic structure of the multivariate multiple time-dependent data (MMTDD) is fairly 

represented in the literature )( Tdn  , where n is the total number of observations (subject count), 

d is the total number of time-dependent variables, and T is the total number of time events. CCA and 

such data may be considered time-independent if the effect of T is not appropriately captured in the 

procedure design. In order to incorporate the time effect, the stated basic structure of the MMTDD 

could further be partitioned as )( 11 tdn  ,  )( 22 tdn  ,…, )( gg tdn   [3, 6] for suitably 

determined 
gt , g < T, such that the average of the CCA could provide a reasonable reflection of the 

relationship between Y and X [7]. 

 In this study, we demonstrate how the optimal value of g is determined via multiple 

discriminant analysis. This procedure is referred to in this study as grouping scheme discriminant 

canonical correlation analysis (GSDCCA). Thus, the GSDCCA is an approach intended to 

effectively incorporate the time effect into the CCA via discriminant analysis to handle the time-

dependent multivariate data (TDMD). Attempts at capturing the time effect in CCA have been 
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pursued in a few notable approaches by [8, 9, 10] from the perspective of optimization incorporated 

into the basic formulation of CCA.  

To comprehend the coupling dynamics and temporal variations between the two time-varying 

sources, [8] created the Time-dependent CCA. Time-dependent canonical vectors can be extracted 

from multilevel time series data using the Time-dependent CCA technique. They suggest a convex 

formulation of the issue that uses the singular value decomposition (SVD) characteristics present in 

all answers to the CCA problem. They test the proposed approach using simulated datasets. They 

show that the Time-dependent CCA-based strategy outperforms previous feature extraction and 

temporal variation detection techniques. Discriminative multiple CCA is used by [11] for the 

analysis and synthesis of multimodal data. They discovered that it could extract more distinct 

features from multimodal information representations. To better use the multimodal data, they 

carefully selected projected trajectories that increased within and decreased between classes.  

It is challenging to understand the concept of CCA because of how it is presented, which 

appears complicated. This might be because the method is mathematically intensive. As a result, it is 

necessary to conduct a study that provides a CCA in a rational and approachable manner. Therefore, 

the study’s objectives are to provide simple procedures for producing canonical variables using 

generated codes and explicitly state the logical justification for the results. It has facilitated the 

application of CCA to multivariate multiple time-dependent data structures.  

The intellectual underpinnings and other writers’ perspectives are considered in Section 2, 

Review of Related Literature. Section 3 describes the methodology for the study and points out how 

discriminant analysis (DA) is incorporated into the CCA. Relevant hypothesis testing techniques 

have also been presented in this section. Section 4 demonstrates the proposed procedure on a suitable 

data set. Section 5 presents the discussion and conclusion, respectively. 

2. Literature Review  

Canonical Correlation Analysis (CCA) is being used as a key approach in increasing studies. A 

comprehensive review of relevant literature is conducted to ascertain the use of CCA. A quick survey 

of the literature on recommendation systems and other types of CCA follows. 

From the work of [12], we use the discriminant analysis (DA) method to evaluate the available 

data when the response variable is categorical and the predictor variable is of an interval type. A 

response variable is divided into different categories when referred to as a categorical variable. For 

example, one of the three dummy variables, 1, 2, or 3, can be the category answer variable. A 

discriminant function is a linear collection of predictor variables that accurately differentiates 

between the response variable categories. Creating discriminant functions is the aim of the DA 

method. The number of categories the response variables have determines how DA is defined. Since 

statistics holds that all propositions are true until infinity, the type used in this case is Two-group DA 

when the dependent variable has two categories. When the dependent variable has three or more 

categories, Multiple-group DA is utilized [12].  
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[6] examined the connection between Indonesia’s economic development and unemployment 

rates in each province in 2021 using CCA, one of the dependent methods used for multivariate 

analysis. Both variables are regarded as dependent factors, and their research uses five independent 

variables: the development of the human index, the minimum wage by region, the percentage of poor 

citizens, investment, and the farmer rate value in each province. This approach allowed them to 

identify the variable with the strongest correlation between the independent and dependent variables. 

According to their findings, the unemployment rate had the most significant influence on the 

connection between the dependent and independent variables, while the human index development 

had the most substantial relationship. 

The work of [13] is also worthy of note. Their work investigates bias and fairness in CCA to 

look at the relationship between two sets of variables. Reducing the correlation disparity error linked 

to protected traits offers a framework that lessens unfairness. Their method guarantees that global 

projection matrices from all data points produced by CCA have similar correlation levels to group-

specific projection matrices. The effectiveness of their approach in lowering correlation disparity 

error without sacrificing CCA accuracy is demonstrated by experimental evaluation on both 

synthetic and real-world datasets.  

The literature makes it abundantly evident that little research has been done on using CCA in 

multivariate time-dependent data. Thus, this area remains grey for further exploration. 

3. Research Design 

We examine the methodology used in this paper and present a review of data notation for 

numerous multivariate multiple time-dependent (MMTD) variables. The review also covers key 

matrices and the fundamental prerequisites and presumptions for using the matrices are pertinent. 

The section provides some multivariate multiple DA methods for selecting a reasonable model and 

CCA methods for these models. The primary goal is to generate ideas for GSDCCA.     

3.1 The Concept of Canonical Correlation Analysis 

Given two interrelated random vectors Y = ( )/
,21 ...,, pYYY and X = ( )/

,21 ...,, qXXX , assume for 

convenience that qp  . The number of variables in each set of variables is used to determine the 

random vectors [1, 14]. The combined covariance matrix is produced by using the enhanced random 

vectors.  

Let E(Y) = 
y  and E(X) = x  be the respective expectations of Y and X. The resulting 

combined random vector, Z, and its mean vector,   are, respectively, given as 

                                        Z = 



















X

Y

...
 and 

( )

( )

















=

XE

YE

...
  

The combined covariance matrix (Σ) for the enhanced random vector is calculated as follows:  
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 Σ  =  E(Z –  )(Z –  )/ 












−−−−

−−−−
=

//

//

))(())((

))(())((

xxyx

xyyy

XXEYXE

XYEYYE
















=

2221

1211
           (1)                                                                    

where, D(Y) =  11  is ( pp ) and D(X) =  22  is ( qq ) sample covariance matrices for Y and X, 

respectively, and Cov(Y, X) = 12  [6, 14].  

       For a fixed number of i = 1, 2, ..., p and j = 1, 2, ..., q, the linear combinations /

iiU = Y and 

/

jjV = X  

are such that the optimal correlation              

          
/

,

* (max 


Corri = Y, 
/ X  12

/) =                                                                           (2) 

 is subject to the constraints:  122

/

11

/ ==   ( /

iCov Y, ) ( /, jij UCovV = X ) 0= , and 

( /

iCov Y, ) ( /, jji VCovU = X ) 1= . 

3.2 Fundamental Approaches to Canonical Correlation Analysis  

Following the Cauchy-Schwarz Inequality approach, the key matrices for canonical correlation 

analysis may be presented in a compact form as   

                 Q 2

1−
= iii P = 2

1

iii kikkikii  −− 11                                                                                    (3) 

where,       

                      2

1

2

1
1 −−−

= iikikkikiiiP ,     




−

+
=

;1

;1

i

i
k  

2

1

=

=

i

i
                                                            (4)                              

Thus, Q i  has the same eigenvalues as P i  , with the corresponding eigenvectors given as 

     
iNE (Eig= P i )   and   Eig(Q i ) = (2

1

Eigii

−
 P i )                                                                        (5) 

where  

    Eig(P i ) =







−−

;

;

1

2

1

2

1
1

112122 N

N

E

E
 

2

1

=

=

i

i
                                                                                              (6) 

It is noted that by defining the matrix, A 2

1

2

1

221211

−−
= , then P 1  = AA /    and    P 2  = A / A. It 

follows from the definitions that the canonical variables are the ordered eigenvectors of the matrices 

Q i , i = 1, 2, and that the first five matrices A, P 1 , P 2 , Q 1  and Q 2  have the same non–zero 

eigenvalues.  

 Let Q it  be a sequence of input matrices for t = {1, 2, 3, ..., g}, g < T where  st  (s = 1, 2, ..., g) 

are some g partitions of the original time period T and Tt =1 under various schemes 1,,.2,1 −T . 

The optimal scheme is equivalent to the multiple-group discriminant analysis (m-group DA) for that 

scheme that yields more optimal values than the 2-group discriminant canonical correlation analysis.

  

For Q it , let the corresponding sequence of eigenvectors be Eig(Q it ) and  t (Q it ) be the 

corresponding values. Thus, for any t, the eigen Equation will be   
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                 [Q −it  Ʌ t (Q it )] Eig(Q it ) = 0                                                                                 (7)  

 

where, Ʌ t (.) is ff  diagonal matrix of eigenvalues of (.) ,  f  = min(p, q). The solution to Equation 

(7) gives the matrix, Ʌ t . The overall canonical correlation between Y and X is for the average matrix 

given as  

                   Ʌ 
=

=
g

tg 1

1
Ʌ t                                                                                                          (8) 

3.3 Link between Canonical Correlation Analysis and Discriminant Analysis 

 It is possible to construct a multiple-group discriminant analysis as a canonical correlation 

analysis problem with group membership as the dependent variable coded using dummy variables 

[15, 16]. Let the observations ky  be a collection of heating variables, kx  label for cooling variables, 

kC  is the collection of points, n is the total number of observations and kn  is the number of 

observations in class k, where k = 1, 2, ..., g then, an average of the observations for class k  is  

 

                )(
1

:1

k

Cxk

k

kki
n

ym 


=                                                                                          (9) 

 

The sum of squares total is defined by  

                           yy

g

k

kk

n

Cxk

T n
i

kk

SyyS )1()(
1

/

:

−== 
= 

                                                                   (10) 

where S
yy

is the sample covariance matrix of Y. The sum of squares total S T  can be divided into the 

sum of squares within class SW  and between class S B  such that 

                 /

1 :

))(( kkk

g

k

n

Cxk

kW

i

kki

mymyS −−= 
= 

                                                                          (11)                  

                 )( /

1

kk

g

k

kB n mmS 
=

=                                                                                                   (12) 

and hence   S T  = S B  + S W  [15]. 

If we define 
)( kk Ck = xIy  as the label matrix with kth entry being described as the indicator 

function, gnX  as a matrix whose rows are the observations, kx , the class labels matrix, 

gnY  and I as the indicator function [1, 17], we have 
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                                          Y = 



























gn

n

n

...00

:.:::

0...0

0...0

2

1

, where     I = 



















1...00

:.:::

0...10

0...01

 

 

It is clear from this that if km  is the average of the observations for class k, then 

 S =YX Y / X = 























/

/

22

/

11

:

gg mn

mn

mn

. It follows that:   S =−1

YY  (Y / Y) 1−  = 





















gn

n

n

1

1

1

...00

:.:::

0...0

0...0

2

1

1

 

Thus,      
Bkk

g

k

kXY n
YY

SmmSS ==
=

− /

1

1                                                                                 (13) 

We begin with the sample canonical correlation matrix equation given in Equation (14), where H  is 

the canonical correlation coefficient (CCC) and   is the coefficient vector for the response variable 

[1, 3, 18]. 

 

               S XY S
1−

YY S )1(2 −= nHYX  S yy
                                                                         (14) 

Substituting Equations (10) and (13) into Equation (14) yields   

  

               S B
2

H = S T                                                                                                    (15)               

Since S T  = S B  + S W , then it follows that:  S B 










−
=

2

2

1 H

H




 S W                                   (16)    

This link will be relevant by first determining the optimal groupings in the data for which 

discrimination is maximum. 

3.4 Formulation of Grouping Schemes Discriminant Canonical Correlation Analysis            

Grouping scheme (GS) is an approach that is intended in this study to incorporate the time 

effect into the discriminant canonical correlation analysis (DCCA) in order to handle the time-

dependent multivariate data (TDMD) effectively. The number of possible group analyses that can be 

performed is denoted as  

G = (2, 3, ..., t – 1) for data on t years. Thus, for multiple-group (m-group) DCCA), Gm . The 

formulations of GS discriminant canonical correlations for 2-group DCCA ( 2G ) and 3-group DCCA 

( 3G ) are given, respectively, as shown in the following matrices: 
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  MG2  = 



























−

tt

t

ttt yy

y

y

yyy

yyy

yy

yy

yy

yyy

yyy

yyy

2...2

1.:

:...1

.

222

:::

222

1...1

1...1

1...1

.

122

112

111

1

4444

33

22

11

333

222

111

                                                                       (17) 

In this section, we assigned 1 to the first 12 months (
1

1y
) and 2 to the remaining months for the 

first column, grouping scheme one ( 1GS ). For the second column, grouping scheme two ( 2GS ), we 

assigned 1 to the first 24 months (
1

1y
to 

21y
) and 2 to the remaining months. For the third column, 

grouping scheme three ( 3GS ), we assigned 1 to the first 36 months (
1

1y
to 

3
1y

) and 2 to the remaining 

months, as shown in the matrix MG2  above. We repeated this procedure for all the grouping schemes 

and used SPSS to run the resulting data, which MG2 denotes a 2-group matrix. 

           
M

G3  = 





























−

−

t

t

t

t

ttt y

y

y

yy

y

yyy

yyy

yyy

yy

yy

yy

yyy

yyy

yyy

3

2

...

...

3

:

1.2

:...1

.

3

:

3

:

3

:

333

233

1...1

1...1

1...1

.

123

112

111

1

25

4

555

444

33

22

11

333

222

111

                                                                   (18) 

 

The general formulation of GS discriminant canonical correlation analysis for m-group DCCA ( mG ) 

is given as 

               mMG  = 

































−

−

−

−

+−−

−

+

t

t

t

t

t

t

mtmt

t

t

t

j

j

t

d

t

d

mm

y

y

y

y

y

y

yy

y

y

y

yy

yy

y

y

y

y

yy

yy

yy

y

yy

yy

yy

yy

yy

m

b

a

m

m

b

m

b

mm

m

m

m

bm

m

1

2

1

2

1

1

15

4

22

11

3

22

11

33

22

11

...

...

...
::...

11...

:

...

...

...

3

:

2.2

1...1

.

...

...

...

::

...

...::

::...

11...

11...

......

:...1

1...1

1...1

.

.2

...12

...11

                                    (19) 

 

where a = (m – 2), b = (m – 1), d = (m + 1), m = 3, 4, ..., t–1;  i = 3, 4, ..., t–1, and 
tyC  means that all 

observations in the year ty  are coded as C. Suppose )(:, jGm   is the best grouping, and  XYZ =  
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is the combined variables of Set 1 and Set 2, then the augmented data that incorporates the scheme is 

given by   

   

                                )(:, jGmF XYZ =                                                                         (20) 

 

where     Z
mqp

F

++     and     m

m jG )(:, . 

3.5 Hypotheses Testing of Discriminant Canonical Correlation Analysis    

We need to analyze some related hypotheses in CCA and DA to arrive at the optimal GS. Let 

r  be the rth canonical correlation, r = 1, 2,..., f. The null and alternative hypotheses for computing 

the statistical significance of CCA [14], are given as follows: 

 

                                   0...: 210 ==== fH                                         

                                  0...: 211  fH       

where f = min(p, q). We can test the hypotheses using a variety of test statistics. The test statistic 

based on Wilks’ Lambda (Ʌ) is given by Equation 21.   

Ʌ )1( 2

1 r

f

r −= =                                                                                           (21) 

The closer Lambda is to zero, the more likely canonical correlation will be statistically significant. 

The statistical significance of Ʌ or the likelihood ratio is tested by using the test statistic [19] given 

as   

         B = ln)]1(1[
2
1 ++−−− qpn Ʌ                                                                               (22)  

The Hotelling’s T-square test statistic is given by   

           ( )/

21

2

21

21  −=
+nn

nn
T S ( )21

1  −−
                                                                          (23) 

where S 
2

)1()1(

21

2211

−+

−+−
=

nn

SnSn
 is the pooled sample covariance matrix of Y and X. S 1  , and S 2  are the 

sample covariance matrices of Y and X, respectively. Large n 2T  is approximately distributed as 

Chi-square ( )2  with p degrees of freedom [19, 20, 21].  

 

If r  is the rth eigenvalue of the matrix P 1  as defined above, for r = 1, 2, ..., f, then the other relevant 

statistic measures in Table 1 are helpful [22] about the stated hypotheses. 

Table 1. Multivariate Tests of Significance  

Test Statistic Method Remarks 

Pillai’s trace 

 
=

+

f

r
r

r

1

1 


 

Should be large and between 0 and 1 

Wilks 

=

+

f

r
r

1

1
1


 
Should be small 
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Roys Largest Root )1( rr  +

 

Should be large 

 

4. Results and Discussions 

The data used for the implementation covers six weather conditions variables obtained from 

Ghana Metrological Agency (GMet) from January 2002 to December 2023 and involves 264 

observations. The data is partitioned into response variables Y = (maximum temperature, minimum 

temperature, solar radiation) and predictor variables X = (precipitation, wind, relative humidity). The 

time series plots of the monthly weather conditions are shown in Figure 1. 

4.1 Some Explorations   

 

Figure 1. Series plots of data on six monthly weather conditions 

 

The two temperature variables have similar characteristics with slightly higher variation in the 

second. In both cases, there is a gently increasing linear trend with considerable variability up to 

about the year 2013, after which the pattern assumes a sharp negative linear trend till the end of the 

series, with variation in the last few portions being quite high. However, the general trend in all six 

series suggests evidence of non-stationarity in the mean. Generally, there appears to be a noticeable 

change in the behaviour of all the series around 2013.  
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Table 2 gives the relevant statistical measures on CCA of the illustrative data without reference to 

the time component. 

Table 2. Relevant Canonical Correlation Analysis Statistic Measures from Original Data 

Root No. CCC Eigenvalue Var. Exp. (%) Cum. Var. Exp. (%) W. Lambda Significant 

1 

2 

3 

0.731 

0.345 

0.175 

1.145 

0.119 

0.031 

87.270 

10.316 

2.414 

87.270 

97.586 

100.000 

0.398 

0.854 

0.969 

0.000 

0.000 

0.004 

   Source: Researchers’ computations (2024) 

 

From Table 2, the column CCC shows the canonical correlation coefficient for the data without 

considering the time effect. All of these coefficients are significant. The results demonstrate that the 

relationship between the heating and cooling climate variables is generally substantial, even without 

considering the time component. Table 3 depicts the overall tests of significance for statistical 

measures of the original data. The results show that all statistical measures are significant, indicating 

that the canonical correlations differ significantly. 

Table 3. Overall Tests of Significance for Statistic Measures of the Original Data 

Test Statistic Hotelling’s Pillai’s Wilks Roy’s Eigenvalue CCC 

Value 

Sign 

0.813 

0.000 

4.339 

0.000 

0.187 

0.000 

0.813 

0.000 

4.339 

0.000 

0.901 

0.000 

Source: Researchers’ computations (2024) 

 

4.2 Grouping Scheme Discriminant Canonical Correlation Functions 

The explorations above are based on the data without referencing the time component. Now, 

consider the effect of the year by first assuming that the year introduces only 2-group discrimination 

in the data. Since m should be two or greater than two, higher statistical values from 2-group 

discriminant canonical correlation analysis (DCCA) would serve as the foundation for further 

research on m-group DCCA. 

4.2.1 Two-group grouping scheme discriminant canonical correlation function  

The 2-group DCCA design is presented in the grouping scheme (GS) pictorial map given in 

Figure 2, where the colours denote dummy variables. The grouping schemes are used to run several 

2G  from grouping scheme one ( 1GS ) through to grouping scheme twenty ( 20GS ) to determine the 

one that has the optimal statistic measures, as shown in Table 4.  
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Figure 2. Grouping Scheme pictorial map for the 2-group discriminant canonical correlation function 

 

Table 4 reports the first discriminant CCC (FDCCC) values and other relevant statistics. 

Grouping scheme fourteen ( 14GS ) has the optimal statistic measures among all the schemes, which 

falls on the 168th month, the end of 2013 as indicated in Figure 2. That is, assuming that the data may 

be suitably segmented into two, then the partition that is provided by month 168 is the one that offers 

the best correlation between the two subsets of weather conditions. It is worth noting that the highest 

FDCCC obtained in this case is 0.907, slightly higher than that in Table 3. 

Table 4. Classification Measures of 2-group Discriminant Canonical Correlation Function 

GS FDCCC Eigenvalue W. Lambda Chi-Square 
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1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

0.141 

0.219 

0.341 

0.425 

0.466 

0.580 

0.556 

0.578 

0.628 

0.700 

0.781 

0.851 

0.898 

0.907 

0.878 

0.835 

0.720 

0.720 

0.632 

0.541 

0.020 

0.050 

0.131 

0.220 

0.278 

0.507 

0.448 

0.501 

0.652 

0.962 

1.564 

2.619 

4.143 

4.627 

3.377 

2.311 

1.474 

1.074 

0.666 

0.251 

0.980 

0.952 

0.884 

0.819 

0.783 

0.663 

0.690 

0.666 

0.605 

0.510 

0.390 

0.276 

0.194 

0.178 

0.228 

0.302 

0.404 

0.482 

0.600 

0.707 

5.221 

12.697 

31.965 

51.598 

63.502 

106.263 

95.964 

105.117 

129.981 

174.606 

243.834 

333.130 

424.140 

447.452 

382.372 

310.115 

234.660 

188.894 

132.276 

89.849 

  Source: Researchers’ computations (2024) 

 

4.2.2 Multiple-group grouping scheme discriminant canonical correlation functions  

We run many DCCA groups, ranging from 3-group DCCA ( 3G ) to 20-group DCCA ( 20G ). The 

primary goal is to determine whether all statistic measures in a given m-group ( mG ) are more 

optimal than those of the 14GS  2-group DCCA ( 2G ) in Table 4. The procedure identifies 7-group 

DCCA ( 7G ) to produce the most optimal results. Figure 3 depicts the plots of the GS pictorial map 

for 7-group DCCA, confirming the most optimal values for all four discrimination measures.   
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Figure 3. Grouping Scheme pictorial map for the 7-group discriminant canonical correlation function 

 

Table 5 depicts the statistical measures of 7-group DCCA. The table shows that the measures of 

each grouping scheme are more optimal than the corresponding values of the 2-group DCCA in 

Table 4. The grouping scheme fourteen ( 14GS ) reports the most optimal values for all measures, 

which also fall in the 168th month. See Appendix for Table 5.  

Table 6 summarizes grouping schemes with optimal values for all m-group DCCA for m = 2, 3, 

4, ..., 16 groups. Since the best GS may not report the highest correct classification, the correct 

classification is not provided in the table.  

The table confirms that 7-group DCCA outperforms all the other grouping schemes.Table 6. Summary 

Statistic Measures for all Best Multiple-Group Discriminant Canonical Correlation Functions 

Group 

 

FDCCC 

 

Eigenvalue 

 

Wilks Lambda 

 

Chi-Square 

 

GS 

 

Month 

 

Year 
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2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

0.907 

0.934 

0.948 

0.967 

0.961 

0.968 

0.956 

0.964 

0.965 

0.965 

0.962 

0.963 

0.965 

0.964 

0.962 

4.627 

6.854 

8.884 

14.375 

12.123 

14.928 

10.601 

13.190 

13.628 

13.715 

12.294 

12.924 

13.669 

12.996 

12.385 

0.178 

0.105 

0.074 

0.045 

0.048 

0.032 

0.046 

0.047 

0.047 

0.040 

0.038 

0.036 

0.034 

0.034 

0.043  

447.452 

582.402 

672.814 

799.903 

777.800 

881.004 

789.584 

784.399 

791.777 

866.505 

808.021 

828.047 

876.168 

841.741 

752.701 

14 

4 

4 

14 

14 

14 

14 

14 

5 

4 

14 

14 

14 

4 

4 

168th 

48th 

48th 

168th 

168th 

168th 

168th 

168th 

60th 

48th 

168th 

168th 

168th 

48th 

48th 

2013 

2003 

2003 

2013 

2013 

2013 

2013 

2013 

2004 

2003 

2013 

2013 

2013 

2003 

2003 

  Source: Researchers’ computations (2024) 

 

Out of all the m-groups, the grouping scheme fourteen ( 14GS ) of 7-group DCCA gives the most 

optimal statistic for all four measures. Again 60% ( )
15
9  of the possible m-group DCCA yields 14GS  as 

the best grouping scheme. The results further indicate that the discriminant correlation between the 

subset of heating variables and the subset of cooling variables improves from 0.901 to 0.968 when 

the time impact is considered. 

4.3 Simulation Studies  

This section conducts simulation studies to assess the proposed procedure’s effectiveness in 

reproducing the original series’ features in Figure 1. We first examine the case of the time-

independent data followed by that of the time-dependent data structure.  

4.3.1 Simulation studies of time-independent data structure  

The parameters for simulation in the case of the time-independent data are presented in Table 7, 

where n represents the total number of observations, d represents the mean of the variable, and T 

represents the standard deviation of data over the entire time.  

Table 7. Parameters for Time-Independent Simulation 

Summary Statistic n d T Min. Value Max. Value 

Maximum Temperature 

Minimum Temperature 

Solar Radiation 

Precipitation 

Wind 

Relative Humidity 

264 

264 

264 

264 

264 

264  

 27.281 

26.500 

22.071 

1.779 

5.793 

0.824 

1.761 

1.612 

4.555 

2.786 

0.978 

0.040  

22.250 

21.897 

9.061 

-6.168 

3.000 

0.708 

32.285 

31.079 

35.014 

9.704 

8.571 

0.938  
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  Source: Researchers’ computations (2024) 

 

The plots of the monthly time-independent simulated weather conditions data are shown in 

Figure 4.  

 

               Figure 4. Series plots of data on six monthly time-independent simulated weather 

conditions   

 

It can be seen that the data exhibit random changes with no noticeable patterns for all variables. 

The pattern appears the same for all variables, with generally wide variation from the mean. Thus, 

the pattern deviates from the original series in Figure 1 for most variables. This observation shows 

that the canonical correlation coefficients of the time-independent data may not reflect reality. Table 

8 shows the overall time-independent simulated values of all statistic measures.   

Table 8. Overall Tests of Significance for Statistic Measures of the Time-Independent Data 

Test Statistic Hotelling’s Pillai’s Wilks Lambda Roy’s Eigenvalue CCC 

Value 

Sign 

0.510 

0.000 

1.039 

0.000 

0.491 

0.000 

0.510 

0.000 

1.039 

0.000 

0.714 

0.000 

Source: Researchers’ computations (2024) 

 

The simulated data is used to generate 2-group to 16-group DCCA to check if the results are 

better than the overall results in Table 8. Results beyond the 16-group DCCA were not found to be 
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interesting; hence, they were omitted. Table 9 summarizes grouping schemes with optimal values for 

all m-group DCCA for m = 2, 3, 4, ..., 16 grouping schemes based on time-independent simulation. 

The table confirms that the grouping scheme fourteen ( 14GS ) of 7-group DCCA has the optimal 

values. Here, 40% ( )
15
6  of the possible m-group DCCA yields 14GS  as the best scheme as shown in 

Table 9 compared with 60% ( )
15
9  in the original data in Table 6. See Appendix for Table 9. 

4.3.2 Simulation studies of time-dependent data structure  

This part of the simulation assumes a time-dependent data structure that incorporates the time 

effect identified in the 7-group DCCA in Table 5. The series plots of the simulated time-dependent 

monthly weather conditions data are shown in Figure 5. Table 10 presents the parameters for the 

time-dependent simulation data. See Appendix for Table 10. 

 

 

            Figure 5. Series plots of data on six monthly time-dependent simulated weather conditions   

 

All six variables, especially the two temperature variables, are seen to follow the pattern in the 

original data. This implies that the canonical correlation coefficients based on the time-dependent 

data reflect reality.  

Table 11 shows the overall discriminant canonical correlation analysis statistic measures for time-

dependent simulated data. The simulated data is used to generate 2 to 16-group discriminant 

canonical correlation analysis and to determine the results that are better than the overall results in 

Table 11. 

Table 11. Overall Tests of Significance for Statistic Measures of the Time-Dependent Data 

Test Statistic Hotelling’s Pillai’s Wilks Lambda Roy’s Eigenvalue CCC 
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Value 

Sign 

0.785 

0.000 

3.655 

0.000 

0.215 

0.000 

0.785 

0.000 

3.655 

0.000 

0.886 

0.000 

Source: Researchers’ computations (2024) 

 

Table 12 confirms that 7-group DCCA with grouping scheme fourteen ( 14GS ) produces the most optimal 

results. It is also found that 67% ( )
15
10  of the possible m-group DCCA yields 14GS  as the best scheme. 

It can also be observed that the values of all the statistic measures in Table 12 are consistent with the 

corresponding values in Table 6 for the original time-dependent data. The results support the 

observation that incorporating the time component improves the correlation between the two subset 

weather variables. 

Table 12. Summary Statistic Measures for All Best DCC Functions Based on Time-Dependent Simulation 

Group FDCCC Eigenvalue Wilks Lambda Chi-Square GS Month Year 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

0.903 

0.937 

0.950 

0.968 

0.958 

0.980 

0.966 

0.971 

0.960 

0.961 

0.954 

0.953 

0.967 

0.956 

0.962 

4.413 

7.181 

9.317 

14.959 

11.092 

24.350 

14.101 

16.291 

11.638 

12.154 

10.027 

9.903 

14.363 

10.577 

12.530 

0.185 

0.117 

0.089 

0.050 

0.064 

0.022 

0.046 

0.039 

0.050 

0.049 

0.058 

0.057 

0.036 

0.048 

0.039  

437.42 

554.65 

625.48 

773.70 

707.63 

975.57 

787.56 

826.67 

765.34 

767.57 

723.09 

725.12 

837.06 

769.37 

812.25 

14 

3 

3 

14 

12 

14 

14 

14 

5 

14 

14 

14 

3 

14 

14 

168th 

36th 

36th 

168th 

144th 

168th 

168th 

168th 

60th 

168th 

168th 

168th 

36th 

168th 

168th 

2013 

2002 

2002 

2013 

2011 

2013 

2013 

2013 

2004 

2013 

2013 

2013 

2002 

2013 

2013 

   Source: Researchers’ computations (2024) 

 

Table 13 summarizes the results of the optimal values of 7-group DCCA for the original data, 

the time-independent simulation data and the time-dependent simulation based on 14GS . 

Table 13. Summary Statistic Measures of Optimal 7-group Discriminant CCF for all Data 

Statistic Measures Original data Time-independent data Time-dependent data 

FDCCC 

Eigenvalue 

Wilks Lambda 

Chi-square 

0.968 

14.928 

0.032 

881.004 

0.252 

0.065 

0.875 

34.106 

0.980 

24.350 

0.022 

975.570 

  Source: Researchers’ computations (2024) 
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Table 14 presents the canonical correlation coefficients for each of the seven time periods of the 

7-group discriminant canonical correlation analysis of the time-dependent data based on the 14GS  

along with their mean values. It is clear from the table that the correlation between heating and 

cooling climate variables could be as high as 0.917. The results, therefore, show that incorporating 

the time effect into canonical correlation analysis achieves a more reasonable relationship between 

subset variables within the data.   

Table 14. Time-dependent CCC using Group fourteen of 7-group DCCF 

CCC 
1  2  3  

1  

2  

3  

4  

5  

6  

7  

0.660 

0.696 

0.832 

0.835 

0.917 

0.640 

0.837 

0.503 

0.265 

0.302 

0.328 

0.347 

0.246 

0.482 

0.135 

0.139 

0.157 

0.218 

0.141 

0.169 

0.308 

Average 0.774 0.353 0.181 

  Source: Researchers’ computations (2024) 

 

5. Conclusions 

To arrive at a specific grouping scheme for a given multiple-group discriminant analysis, the 

method described in this paper has shown that the inclusion of the time effect in canonical 

correlation analysis aids in the determination of more realistic correlation coefficients between 

subsets of variables. It has been noted that significant changes resulting from extreme observations 

made at different times may impact the outcomes of the suggested technique. Identifying the key 

matrices that cause the necessary modification of the original variables is essential to understand the 

process of extracting canonical variables. Additionally, generalized correlations between these 

important matrices were found in the study. Six main techniques that usually cover the independence 

of the new variables and unit variance have been used to analyze and explain the theoretical 

properties of the new canonical variables. It has been demonstrated that the inverse matrix must 

combine the matrices that generate the required canonical variables. The study identifies the proper 

division, dataset structure, and pertinent matrices that allow us to arrive at the desired theoretical 

outcome. The ability to extract canonical variables from unprocessed, centred, or normalized data 

has been demonstrated. Multivariate multiple time-dependent and CCA were the main subjects of the 

study. To characterize the three separate data structures, the generic form of multivariate multiple 

time-dependent has been described in three different ways. The literature doesn’t consider the data 

format for multivariate multiple time-dependent applications. Even though the benefits of expanded 
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CCA methods have been shown in individual research, a thorough comparison of CCA and DA 

methods is still lacking. From the illustrative dataset, higher overall correlation coefficients are 

obtained for the two sets of variables when the time-dependent structure is considered than when the 

data is assumed to be time-independent. In particular, correlations could be much higher between the 

two sets of variables for some years than others. The results, therefore, reflect reality and justify the 

technique adopted. Further research could improve the procedure by controlling the extremes in the 

data.  

5. 1 Recommendation for Future Research 

The study unequivocally shows that the proper protocols for multivariate multiple time 

dependencies are being followed. The outcomes of this study have shown how beneficial the 

suggested Grouping Scheme Discriminant Canonical Correlation Analysis is. This will lay the 

groundwork for experimental validation and verification and provide additional insight into future 

grouping scheme methods. It is demonstrated that multivariate multiple time-dependent data 

structures may not be appropriate for the conventional Canonical Correlation Analysis. For now, 

there is considerable time for interaction with the data using the proposed methodology. Therefore, 

the Grouping Scheme Discriminant Canonical Correlation Analysis procedure requires some 

enhancement to reduce implementation time. The approach could also serve as a fundamental step 

for obtaining what may be known as a “Fundamental Multivariate Canonical Time Series Modelling 

(FMCTSM)”. By this, it should be possible to determine canonical correlations between the two 

variables over time. 
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APPENDIX 

Table 5. Classification Measures of 7-group Discriminant Canonical Correlation Function 

GS FDCCC Eigenvalue W. Lambda Chi-Square 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

0.950 

0.951 

0.946 

0.943 

0.943 

0.925 

0.931 

0.939 

0.939 

0.935 

0.937 

0.952 

0.956 

0.968 

0.947 

0.931 

0.935 

0.942 

0.945 

0.938 

9.347 

9.509 

8.534 

7.986 

8.090 

5.952 

6.524 

7.434 

7.399 

6.929 

7.148 

9.574 

10.717 

14.928 

8.614 

6.471 

6.963 

7.815 

8.386 

7.264 

0.059 

0.050 

0.047 

0.052 

0.058 

0.075 

0.071 

0.064 

0.057 

0.050 

0.053 

0.048 

0.055 

0.032 

0.050 

0.059 

0.066 

0.068 

0.058 

0.058 

727.005 

766.905 

785.478 

757.882 

731.603 

663.451 

677.124 

704.327 

735.468 

767.748 

754.499 

778.181 

743.672 

881.004 

770.788 

724.858 

697.764 

689.833 

728.640 

728.935 

  Source: Researchers’ computations (2024) 

 
 Table 9. Summary Statistic Measures for all best DCC Functions Based on Time-Independent Simulation 

Group 

 

FDCCC 

 

Eigenvalue 

 

Wilks Lambda 

 

Chi-Square 

 

GS 

 

Month 

 

Year 

 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

0.163 

0.214 

0.215 

0.240 

0.241 

0.252 

0.224 

0.203 

0.166 

0.216 

0.202 

0.211 

0.197 

0.027 

0.048 

0.048 

0.061 

0.061 

0.065 

0.053 

0.043 

0.028 

0.049 

0.042 

0.046 

0.040 

0.973 

0.945 

0.924 

0.897 

0.885 

0.875 

0.877 

0.895 

0.928 

0.904 

0.901 

0.886 

0.879 

7.014 

14.532 

20.895 

28.097 

31.320 

34.106 

33.592 

28.283 

19.019 

25.617 

26.575 

30.823 

32.521 

3 

4 

4 

14 

13 

14 

14 

11 

5 

4 

14 

14 

14 

36th 

48th 

48th 

168th 

156th 

168th 

168th 

132nd 

60th 

48th 

168th 

168th 

168th 

2002 

2003 

2003 

2013 

2012 

2013 

2013 

2010 

2004 

2003 

2013 

2013 

2013 
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23 

15 

16 

0.192 

0.208 

0.038 

0.045 

0.914 

0.901  

22.631 

26.234 

4 

4 

48th 

48th 

2003 

2003 

Source: Researchers’ computations (2024) 

 
Table 10. Parameters for Time-Dependent Simulation 

Dummy 

Variable 

Summary 

Statistic 

Maximum 

Temp. 

Minimum 

Temp. 

 

Solar 

Radiation 

Precipitation 

 

Wind 

 

Relative 

Humidit

y 

 

1 

  

1n  

d 

1T   

 168 

28.3936 

0.8371 

  168 

27.4733 

0.8919 

168  

23.6454 

2.8411 

168  

1.5621 

2.5036 

168  

5.5853 

0.9600 

168  

0.8052 

0.0340 

 

2 

 

2n  

d 

2T  

12 

26.2167 

0.2435 

12 

25.6392 

0.2788 

12 

19.0975 

6.2086 

12 

2.5600 

3.1881 

12 

6.0675 

0.7672 

12 

0.8450 

0.0144 

 

3 

 

3n  

d 

3T  

12 

25.8606 

0.2349 

12 

25.3883 

0.2862 

12 

20.0675 

4.0123 

12 

0.5092 

3.6183 

12 

5.9283 

0.8360 

12 

0.8392 

0.0108 

 

4 

 

4n  

d 

4T  

12 

25.5267 

0.3678 

12 

25.0075 

0.5557 

12 

20.2108 

4.3460 

12 

0.4183 

0.6053 

12 

6.8758 

0.8802 

12 

0.8133 

0.0287 

 

5 

 

5n  

d 

5T  

12 

25.1575 

0.3160 

12 

24.5017 

0.2335 

12 

18.9542 

4.1757 

12 

1.4875 

2.6869 

12 

6.2342 

0.8720 

12 

0.8283 

0.0233 

 

6 

 

6n  

d 

6T  

12 

24.6850 

0.2452 

12 

24.833 

0.2203 

12 

17.6292 

5.1353 

12 

1.4158 

1.8420 

12 

6.2825 

0.5686 

12 

0.8600 

0.0095 

 

7 

 

7n  

d 

7T  

36 

24.7079 

0.3680 

36 

24.1875 

0.4357 

36 

18.5814 

5.8268 

36 

2.4558 

3.6634 

36 

5.7525 

0.8422 

36 

0.8783 

0.0161 

  Source: Researchers’ computations (2024) 
 


