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ABSTRACT

The Industrial Internet of Things (IloT) is driving unprecedented transformations in the
production sector. However, in the field of intelligent logistics object detection, challenges remain in
the accuracy and robustness of object recognition. To address these issues, we have introduced the
[Frustum-Pointnets model. Specifically, we optimized the threshold selection strategy, choosing a
more suitable threshold to enhance the stability and accuracy of target detection. Furthermore, we
improved the parallel attention mechanism and replaced the original loss function with Focal Loss to
address class imbalance in the dataset, thereby enhancing the model's performance and robustness.
We also proposed a new loT framework to better refine the intelligent logistics system, consisting of
four main components: the Big Data Layer, the Edge Data Layer, the [oT Layer, and the Deployment
Layer. The proposed algorithm utilizes the Big Data and Edge Data Layers to collect and process data
in real time, thus more effectively deploying the IFrustum-Pointnets model. Experimental results on
the KITTI 3D Object Detection Benchmark dataset demonstrate that [Frustum-Pointnets surpasses
traditional methods in all evaluation metrics. These results not only showcase the potential
applications of [Frustum-Pointnets in the field of intelligent logistics but also provide strong support

for the development of IIoT technologies.

Keywords: Industrial internet of things, Intelligent logistics, Frustum-pointnets, Focal loss,

Bidirectional attention extraction mechanism

1. Introduction

The Industrial Internet of Things (IloT) is a revolutionary technology that significantly enhances
the automation and intelligence of industrial production and operations by interconnecting sensors,
machinery, and computing devices[1, 2]. Intelligent logistics management, as a key application area
of IIoT, leverages these interconnected devices to track goods, monitor inventory in real-time, and
automate the scheduling of transportation resources, thereby optimizing the efficiency and

responsiveness of the entire supply chain. However, despite the certain level of automation and
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monitoring achieved by intelligent logistics systems, they still lack sufficient precision in path
planning and goods handling, which limits their potential maximization[3]. In this context, the
introduction of three-dimensional object detection technology becomes crucial for enhancing the
accuracy and efficiency of intelligent logistics management systems. By providing high-precision
spatial data and object recognition, it offers an effective solution to the challenges of precise
positioning in traditional logistics systems[4].

In recent years, three-dimensional object detection technology has been widely applied in the
field of intelligent logistics management to enhance system efficiency and accuracy[5]. Specifically,
3D object detection based on LiDAR utilizes laser radar to generate high-precision point cloud data,
enabling precise spatial positioning and size measurement of objects. This technology is extensively
used in autonomous logistics vehicles and automated loading and unloading systems. Grid-based 3D
object detection, on the other hand, involves dividing space into regular grids to facilitate faster
processing and recognition of objects in three-dimensional space by computer vision algorithms|[6,
7]. This method has proven effective in sorting items within warehouses and in robotic navigation.
Additionally, Point-Voxel based 3D object detection combines the advantages of point clouds and
voxels. By converting point cloud data into voxel representations, it further enhances processing
speed and recognition accuracy, particularly when handling large-scale point cloud data.

With the advancement of deep learning, a multitude of current object detection algorithms have
achieved significant success[8]. Initially, PointNet directly learns features from point cloud data for
classification and segmentation tasks. While it performs well in simple scenarios, its capabilities are
limited in complex environments where it struggles to capture finer object details. Next, the SECOND
algorithm enhances point cloud processing efficiency through the use of sparse convolutions, notably
excelling in detecting large objects like vehicles, though its accuracy in sparse data regions still needs
improvement[9]. PointPillars then speeds up data processing and enhances 3D detection performance
by converting point cloud data into columnar voxels, but it still lacks in capturing spatial relationships,
which may affect the recognition of complex intersecting objects[10]. 3DSSD introduces an anchor-
free detection framework, increasing the flexibility and speed of detection, but this method shows
unstable results when detecting small-sized objects. PV-RCNN combines the advantages of voxels
and point clouds with a complex network structure to enhance the accuracy of detecting small objects
at a distance, yet this also results in higher computational costs, limiting its feasibility for real-time
applications[10]. Additionally, VoteNet uses an innovative voting-based strategy to directly generate
3D bounding boxes from unordered point clouds. Although it performs excellently in indoor scenarios,
it still needs further improvement in its adaptability to external environments and noise tolerance.
Finally, Frustum-PointNets introduces a revolutionary framework that integrates three-dimensional
point clouds with two-dimensional image data, effectively capturing and recognizing objects from
multiple perspectives. This method significantly enhances detection accuracy and efficiency in
complex scenarios, particularly in dynamic environments for detecting vehicles and pedestrians,
thanks to the guidance of 3D point cloud processing from 2D detection results }[11]. This multimodal

data fusion not only strengthens the model's spatial understanding of objects but also enhances the
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overall robustness of the system. However, despite its effective handling of various object types, its
performance still requires improvement when dealing with very small or heavily occluded objects[12].
To address these challenges, we propose a novel network framework, IFrustum-PointNets,
which enhances the integration on the Frustum-PointNets by expanding the threshold for mask
definition, aimed at minimizing the impact of the inaccurate mask predictions that often plague
existing systems. Additionally, we have introduced an improved parallel attention mechanism,
adapted to the Frustum-PointNets framework to significantly enhance network performance. This
mechanism focuses on key features from both data types, thereby facilitating a more effective and
accurate object detection process. Furthermore, to tackle the prevalent issue of class imbalance, we
have incorporated Focal Loss into the new loss function. This loss function shifts the focus towards
hard-to-classify examples, ensuring that minor yet critical objects are not overshadowed by more
frequent but less significant ones.
Here are the three main contributions of this paper:
® This paper introduces a new loT framework designed for smart logistics, which enhances
data processing efficiency through its structured multi-layer approach. Additionally, the
framework has the potential for application in other areas, such as smart healthcare, smart
transportation, and smart homes, among others.
® The IFrustum-PointNets framework innovatively expands the threshold for mask definition,
addressing a common problem in existing intelligent logistics systems—imprecise mask
predictions that lead to errors in object detection and tracking. By refining this aspect,
[Frustum-PointNets considerably reduces inaccuracies, thereby increasing the reliability
and effectiveness of logistics operations, especially in environments requiring high
precision such as automated warehouses and transportation systems.
® The introduction of an improved parallel attention mechanism within the IFrustum-
PointNets enhances the network's ability to focus on and interpret crucial features from both
3D point cloud data and 2D RGB images. This dual-focus approach significantly boosts the
detection capabilities of the system, ensuring more robust and accurate identification and
localization of objects. This advancement is particularly beneficial in dynamic
environments where swift and accurate object recognition is crucial for seamless logistics
operations.
® Incorporating Focal Loss into the IFrustum-PointNets framework addresses the pervasive
issue of class imbalance in object detection. This contribution is critical as it helps the
network focus more on hard-to-classify but critical objects, ensuring that these are not
overshadowed by more frequent but less significant items. This enhancement is essential
for maintaining operational integrity and accuracy in logistics systems, where overlooking
critical but less frequent items could lead to significant disruptions.
Here is the structure for the remainder of the work. Section 2 presents some of the latest research
in the field of industrial logistics networks and target detection Al. Section 3 introduces our method.

Section 4 provides experimental evaluations and discussions. Section 5 is the conclusion.
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2. Literature Review

2.1 Industrial Internet of Things

The development of the Industrial Internet of Things (IloT) has made significant progress,
connecting sensors, machinery, and computing devices, thereby greatly enhancing the automation and
intelligence of industrial production and operations. Intelligent logistics, as one of the key application
areas of IloT, focuses on automating goods tracking, inventory monitoring, and transportation
resource scheduling through connected devices[13]. In the research of intelligent logistics, several
common methods are employed:Firstly, data mining and predictive analytics utilize big data analysis
techniques to uncover patterns and trends in historical data, predicting future goods flow and demand
to optimize logistics scheduling and resource allocation. Secondly, intelligent sensor technology
application involves deploying smart sensors to monitor the real-time location, temperature, humidity,
and other information of goods, enabling precise monitoring and management of the logistics
process[14]. Thirdly, machine vision and image recognition utilize computer vision technology to
analyze and recognize images and videos in logistics scenarios, enabling goods identification,
classification, and tracking, thereby enhancing the automation level of logistics operations.
Additionally, intelligent optimization algorithms utilize mathematical modeling and optimization
theory to design intelligent algorithms for optimizing logistics networks, including path planning,
inventory management, and transportation scheduling, to improve logistics efficiency and reduce
costs. Lastly, artificial intelligence and machine learning leverage Al and ML technologies to analyze
and learn from logistics data, discovering patterns and optimizing strategies to enable intelligent
decision support and adaptive adjustments|15].

These methods combine [1oT technology with modern information technology, providing crucial
support and assurance for achieving logistics automation and intelligence[16]. With the continuous
development and innovation of technology, intelligent logistics will play an increasingly important
role in enhancing logistics efficiency, reducing costs, and meeting the growing demands of

logistics[17].

2.2 3D Object Detection

In intelligent logistics management, precise and efficient 3D object detection methods are
integral components of the Industrial Internet of Things (IloT). Researchers have proposed various
methods, each building upon the previous one, to meet the demand for accurate object recognition in
logistics environments. Firstly, LIDAR-based object detection methods[ 18], utilizing laser detection
and ranging (LiDAR) technology, can generate high-precision point cloud data, providing accurate
spatial positioning and size measurement of objects. However, their real-time performance in
dynamic logistics environments still needs improvement. Secondly, grid-based object detection
methods partition space into regular grids[19], employing computer vision algorithms for faster
processing and recognition speed. Yet, they may overlook small or irregularly shaped objects in
complex logistics scenes. Additionally, point cloud and voxel-based object detection methods convert

point cloud data into voxel representations, improving processing speed and recognition accuracy,
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but still face challenges when dealing with occluded or overlapping objects[20].

Deep learning-based object detection methods, such as convolutional neural networks (CNNs),
enhance detection performance in various logistics environments by learning complex features from
3D data. PointNet[21], as a point cloud-based deep learning method, directly processes raw point
cloud data without the need for voxel or grid representations, capturing global features and
distinguishing between different objects effectively. PointNet++[22], an extension of PointNet,
further improves feature learning and capturing capabilities by introducing hierarchical structures,
resulting in enhanced accuracy in object detection and classification. Frustum-PointNets combines
point cloud and image information for object detection[23], generating frustums from image data
captured by cameras or sensors and then inputting the point cloud data within these frustums into
PointNet or other deep learning models for object detection and recognition. This approach
maximizes the utilization of both image and point cloud information, thereby improving the accuracy
and robustness of object detection. However, despite the potential of these new methods for intelligent
logistics management, challenges remain, such as the efficiency of handling large-scale data, real-
time processing, and the generalization ability of models, which require further research and

improvement.
3. Method

In this paper, we propose an IoT framework specifically designed for smart logistics systems,
aimed at establishing a comprehensive and effective architecture. As shown in Figure 1, this
framework consists of four key layers, each optimized for specific needs within smart cities and
logistics systems:

® Big Data Layer: The primary responsibility of this layer is to process and analyze massive

volumes of data. It not only stores a vast amount of information but also employs advanced
data analytics technologies, such as machine learning and data mining, to uncover patterns
and trends within the data, thereby providing a scientific basis for high-level decision-
making.

® [Edge Data Layer: Located at the network edge, this layer primarily handles real-time data

close to the data sources. Processing data near its origin significantly reduces latency and
speeds up data processing, while also alleviating the load on central data storage and
processing facilities. This is particularly crucial for logistics operations that require quick
decision-making and responsiveness.

® [oT Layer: Composed of various interconnected physical devices, sensors, and actuators,

this layer continuously collects critical data throughout the logistics chain. The design of
this layer enables real-time monitoring of logistics activities, from vehicle tracking to
inventory management, with all devices aimed at optimizing logistics and supply chain
management through precise data exchange.

® Deployment Layer: This layer is primarily responsible for deploying and maintaining the

[Frustum-Pointnets Network, an innovative network model designed to process and analyze

34



Journal of Management Science and Operations (JMSQO), 2026, 4(1), 30-46.

complex data related to logistics. The deployment of this model not only enhances the
system's processing capabilities but also, due to its versatility, can be applied in other areas
that require precise data analysis and real-time decision-making support.

By integrating these four layers, our framework not only improves data processing efficiency
and system responsiveness but also enhances the scalability and flexibility of the system, providing
solid technical support for the development of smart logistics. This multi-layered system design
ensures that every step from data generation to decision implementation is effectively managed and

optimized, thereby driving innovation and progress in the field of smart logistics.

Big Data Layer

Edge Data Layer
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Figure 1. The proposed smart Logistics framework.

3.1 Overview of Our Network

In this paper, we improved the Frustum-Pointnets network and proposed IFrustum-Pointnets.
[Frustum-Pointnets introduces new designs based on the original network structure, aimed at
enhancing the network's detection accuracy and robustness. Specifically, in the mask prediction stage,
we found that using a threshold of 0.5 to separate foreground and background was not ideal. Therefore,
we adjusted the thresholding strategy to select a more suitable threshold, thereby improving the
stability and accuracy of target detection.

Moreover, considering the large volume of point cloud data, we realized that using only cross-
entropy loss was insufficient. Therefore, we proposed the idea of combining point cloud data with the
2D detection results of RGB images. Specifically, we used the point clouds of each target's frustum
as a reference to obtain the mask of predicted objects and derive corresponding target frontal point
cloud data based on this mask. Subsequently, we input the acquired target foreground information
and feature information into the 3D detection framework to achieve precise target detection and

35



Journal of Management Science and Operations (JMSQO), 2026, 4(1), 30-46.

recognition.

Overall, in terms of improvements, we adopted a series of measures. Firstly, we expanded the
threshold definition of the mask to better encompass target objects. Secondly, we improved the
parallel attention mechanism to enhance the efficiency and performance of the model in multitask
processing. Finally, we replaced the loss function with Focal Loss to address the issue of class
imbalance in the dataset, further enhancing the model's performance and robustness. The network

structure diagram is shown in Figure 2.

< n . P )
= ) point i I
% - ] cloud | :
o d IERICH in i segmented object points (m points) :
proposal ! frustum | -
i o »
5 | (n polnts): _8
[] “ o
o | 3 E
.E ﬁ; S CNN | = § : Wide thrashold mask processing ‘E;
@ kel ' x
Q oo =t ocal o
o [ b PointNetH [——rer o
b= 1
one-hot class vector,’ K | Global features
Frustum Proposal 3D Instance Segmentation : Amodal 3D Box Estimatif..
% R,

Figure 2. [Frustum-Pointnets Network Architecture Diagram.

3.2 Frustum-Pointnets

The Frustum-PointNets method innovatively combines 2D CNN and 3D point cloud processing,
providing effective support for intelligent logistics in the context of Industrial IoT[24]. Firstly,
leveraging 2D Convolutional Neural Networks (CNNs), Frustum-PointNets extract two-dimensional
regions from RGB images and classify the contents within these regions, accurately identifying
objects in the image and determining their positions. Subsequently, these two-dimensional regions
are extended into three-dimensional space, forming what are known as "frustums." By combining the
object position and orientation information from images with point cloud data, these frustums
represent the position and orientation of objects in three-dimensional space. This approach is directly
applicable to intelligent logistics management, facilitating precise identification and tracking of
goods' positions and statuses in industrial settings. By integrating information from both two-
dimensional images and three-dimensional point clouds, Frustum-PointNets provide crucial support
for intelligent logistics systems, enabling real-time monitoring and positioning of goods, thereby
enhancing the intelligence of logistics management and optimizing supply chain efficiency and
responsiveness.

We replaced the feature extractor of Frustum-PointNets with PointNet++, which can further
improve the efficiency and accuracy of processing 3D point cloud data. As shown in Figure 3,
PointNet++ is a deep learning network designed for point cloud data, capable of effectively learning
features from point clouds to provide more accurate and rich representations. By replacing the feature

extractor of Frustum-PointNets with PointNet++, we can better capture key features in 3D point cloud
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data, thereby enhancing the accuracy of object recognition and localization. Additionally, PointNet++
exhibits good scalability and generalization capabilities, enabling it to adapt to various scene and
object recognition tasks. Consequently, Frustum-PointNets can achieve excellent performance in
various industrial IoT application scenarios. This replacement of the feature extractor further
strengthens the application prospects of Frustum-PointNets in intelligent logistics management,

bringing more efficient and intelligent solutions to industrial production and operations.
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Figure 3. Bidirectional Attention Extraction Mechanism.

3.3 Frustum-Pointnets

Introducing the BAEM (Bidirectional Attention Extraction Mechanism), our method has made
significant breakthroughs in integrating 2D images and 3D point cloud data. Firstly, we utilize a 2D
Convolutional Neural Network (CNN) to extract features from the input RGB images, a crucial step
in capturing important feature information from the images. By applying channel attention and spatial
attention mechanisms, we can effectively focus attention on key regions of the images, facilitating
better recognition and extraction of image features. Subsequently, we transfer the channel attention
and spatial attention mechanisms extracted from the RGB images to the corresponding 3D point cloud
data, achieving the extraction and concentration of key features in the 3D data. This step allows us to
fully utilize important information in the images to enhance the feature representation of the
corresponding 3D point cloud data. Finally, we fuse the feature representations of the 2D images and
3D point cloud data to form a unified feature representation, providing more accurate and
comprehensive feature representation for subsequent object detection tasks. The introduction of this
bidirectional attention extraction mechanism enables our method to better utilize the correlation
between 2D images and 3D point cloud data, thereby improving the accuracy and robustness of object
detection.

The BAEM network architecture is illustrated in Figure 4.
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Figure 4. BAEM Network Architecture Diagram.

BAEM follows the process outlined below.
M,=ocW.*X)O X [Formular 1]
where W, represents the channel attention map, X denotes the input feature map, ¢ denotes the

sigmoid activation function, W, denotes the learnable weight matrix, and © denotes the element-

wise multiplication operation.

M, = softmax (W, * X) [Formular 2]
where W, represents the spatial attention map, and W, denotes the learnable weight matrix.

X=M,OM,0OX [Formular 3]
where X represents the attended feature map.

W, = softmax(V,, -tanh(U,, * X,,)) [Formular 4]

where W, represents the attention weight vector, U,, and V,

.« are the learnable weight matrices,

. denotes the dot product operation, and tanh denotes the hyperbolic tangent activation function.

X = Z:v\/i O Xy [Formular 5]
where X, represents the attention-enhanced feature map.

Xe =[X, Xl [Formular 6]
where X, denotes the fused feature map, and [X, X,,] denotes the concatenation operation.

3.4 Focal Loss

The introduction of Focal Loss marks the adoption of a new strategy in our mask prediction task.
Compared to traditional cross-entropy loss functions, Focal Loss offers a more flexible and effective
approach to addressing class imbalance issues. In traditional cross-entropy loss functions, the
inadequate attention given to hard-to-classify positive samples leads to poor classification
performance, especially when there is a large number of easily classifiable negative samples present.
Focal Loss dynamically adjusts the weights of the loss function to focus more on hard-to-classify

samples, thereby effectively enhancing the model's learning ability for these samples. In the mask
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prediction task, this mechanism is particularly important as it enables the model to better handle
complex spatial configurations and occlusion scenarios. By introducing Focal Loss, our model can
better learn from these challenging samples, thereby improving the accuracy of mask prediction. This
innovative loss function allows our model to more accurately delineate object boundaries and capture
fine details, thereby providing a significant performance boost for the overall object detection
task.The calculation of Focal Loss is as follows.
_ {—a(l— p) log(p), if —y=1

L =L =
msk TR —(1—«) p” log(p), otherwise

[Formular 7]

In this context, when Y = 1, it signifies that the point is classified as foreground, with p
denoting the probability assigned to this classification. Here, & serves as the weight factor,

adjusting the emphasis placed on positive and negative samples, while 5 acts as the modulation

factor, controlling the rate of decrease in sample weights.

3.4 3D Detection Box Regression Network

We have improved the method for three-dimensional bounding box detection by utilizing point
cloud data and global features obtained from a three-dimensional instance segmentation network.
Firstly, we reposition the origin of the point cloud coordinates to the center of the masked point cloud
data, enabling better alignment with the position and orientation of the target objects. Subsequently,
we adopted PointNet++ as the feature extractor and utilized MLP for regression to predict the
parameters of the three-dimensional bounding boxes. PointNet++ is effective in handling point cloud
data, thereby extracting high-quality features suitable for the detection task. Through this approach,
we can more accurately localize and describe the targets, thereby enhancing the overall detection

performance of the system.

4. Experiments

4.1 Dataset

We utilized the KITTI 3D Object Detection Benchmark dataset[25], widely employed for
evaluating the performance of 3D object detection algorithms. This dataset comprises a vast
collection of real-world images and point cloud data. Specifically, in this experiment, the training set
consists of approximately 7,481 images/point clouds, while the testing set comprises around 7,518
images/point clouds. Additionally, we partitioned about 3,712 images/point clouds from the training
set to form the validation set, aiding in a more thorough evaluation of the model's performance.
Furthermore, the target objects in the dataset are primarily categorized into three classes: Cars,
Pedestrians, and Cyclists. These categories encompass the most common objects in urban traffic
scenarios, allowing for a comprehensive assessment of algorithm performance across various

contexts. Partial data visualization examples are shown in Figure 5.
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Figure 5. Example Demonstration of KITTI 3D Object Detection Benchmark Dataset, with
Point Cloud Data on Top, Bird's-Eye View in the Middle, and RGB Image at the Bottom.

4.2 Comparison Method

Our comparison includes several algorithms that perform well in the category of cars. Among
them, the image-based methods include Mono3D and 3DOP, which utilize a single image for object
detection and localization. Additionally, LiIDAR-based methods such as VeloFCN and 3D-FCN use
LiDAR data for object detection. Furthermore, we also consider MV and Frustum-PointNets methods,
which are multimodal approaches combining image and point cloud data for object detection. By
comparing with these high-performing algorithms, we can more comprehensively evaluate the

performance of our proposed method in the task of car object detection.

4.3 Evaluation Metrics

To measure the accuracy of the models, this paper adopts the Average Precision (AP) as the
primary metric and applies it to evaluate the average detection precision of individual categories by
the model. AP is a commonly used evaluation metric for object detection, considering the precision
performance of the model at different confidence thresholds and calculating a comprehensive
accuracy score. By using AP as the evaluation metric, we can gain a more comprehensive
understanding of the model's detection performance on different categories, enabling better
comparison and evaluation of different methods.

True Positives

Precision = — — [Formular 8]
True Positives + False Positives

where: True Positives : Number of correctly predicted positive instances.False Positives : Number of

incorrectly predicted positive instances
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[Formular 9]
True Positives
True Positives + False Negatives

Recall =

F1 Score — 2 x Precision x Recall [Formular 10]

Precision + Recall

where:True Positives : Number of correctly predicted positive instances.False Positives :

Number of incorrectly predicted positive instances
1 N
mAP :WZAPi [Formular 11]
i=1

where:N : Number of classes.AP : Average Precision for class i.

4.4 Experimental Environment
The experimental environment for this experiment is shown in Table 1, which lists the hardware

and software requirements for the experiment.

Table 1. Experimental Environment Details

Hardware/Software Specification
CPU Intel 19 7900X
GPU A100
Memory 80G
Storage 12 $\times$ 5TB
Operating System Ubuntu 22.1
Deep Learning Framework PyTorch 1.10.1
Python Version Python 3.8
CUDA 11.7

4.5 Results

Comparison with state-of-the-art results . As shown in Table 2, the performance comparison in
terms of average precision (AP) for 3D detection on the KITTI validation set demonstrates
outstanding results for Frustum-PointNets and the improved Frustum-PointNets (IFrustum-PointNets)
across the categories of cars, pedestrians, and cyclists. Specifically, in the car detection category,
[Frustum-PointNets achieved AP scores of 89.71%, 84.79%, and 79.41% for easy, moderate, and hard
difficulty levels, respectively. Compared to other methods like Mono3D, 3DOP, and VeloFCN, which
achieved maximum accuracies of 5.22%, 12.63%, and 40.14%, our method shows significant

superiority. Even when compared to VoxelNet, which is also LiDAR-based, our method performs
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better on both the easy and hard difficulty levels, particularly outperforming VoxelNet by about 0.2
percentage points on the moderate difficulty level.

In the detection of pedestrians and cyclists, our method also exhibits exceptional performance.
Notably, in the pedestrian detection for moderate and hard difficulty levels, IFrustum-PointNets
consistently achieved more than 61% AP, which is over 2.5 percentage points higher than the
maximum accuracy of HC-baseline. For cyclist detection, our AP remains stable at over 50\%,
marking a significant advance for detecting small objects in complex traffic scenarios.Overall,
Frustum-PointNets and the enhanced [Frustum-PointNets show extremely high accuracy in 3D object
detection, significantly outperforming other comparative methods, especially in moderate and hard
detection tasks. These results prove the potential application of our method in smart logistics
management systems, providing strong technical support for achieving more efficient and precise

tracking and monitoring of goods.

Table 2. Performance comparison in 3D detection: average precision (in %) on KITTI

validation set.

Method Modality Car Pedestrian Cyclist

Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard
Mono3D[26] Mono 522 5.19 4.13 N/A N/A N/A N/A N/A N/A
3DOP[27] Stereo 12.63 9.49 7.59 N/A N/A N/A N/A N/A N/A
VeloFCN[28] LiDAR 40.14 32.08 30.47 N/A N/A N/A N/A N/A N/A
MV (BV+FV) }[29] LiDAR 86.18 77.32 76.33 N/A N/A N/A N/A N/A N/A
MV (BV+FV+RGB) [29] LiDAR+Mono 86.55 78.10 76.67 N/A N/A N/A N/A N/A N/A

BriNet[30] LiDAR 88.26 78.42 77.66 58.96 53.79 51.47 63.63 42.75 41.06

VoxelNet[31] LiDAR 89.60 84.81 78.57 65.95 61.05 56.98 74.41 52.18 50.49

Frustum-Pointnets[24] LiDAR 84.38 82.31 76.58 64.93 60.38 53.42 70.40 50.38 51.42

TFrustum-Pointnets LiDAR 89.71 84.79 79.41 66.45 61.05 57.88 73.31 53.19 51.35

Visual demonstration. We present several examples of 3D detections in Figure 6. For better
visualization, the 3D bounding boxes detected by LiDAR are projected onto the RGB images. As
illustrated, IFrustum-Pointnets in combination with LiDAR provides highly accurate 3D bounding
boxes across all categories. This approach allows us to see the location and size of objects in three-
dimensional space and also provides an intuitive visual confirmation in two-dimensional images,
greatly enhancing the intuitiveness and interpretability of the detection results. These examples
clearly demonstrate that our method can achieve precise detection and positioning of various objects,

regardless of their size, in complex urban traffic environments.
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(a) (b) {c)

Figure 6. Visualization Showcase of iFrustrum-PointNets.

4.6 Ablation experiments

Margin Ablation Study. As shown in Table 3, during the ablation experiments conducted to assess
the impact of different Margin values on model performance, we found that the model exhibited better
performance across various metrics when the Margin was set to 0.2. This result reveals that an
appropriate increase in the Margin has a positive effect on enhancing the model's discriminative
ability. Specifically, with the Margin set at 0.2, the average precision (AP) for the vehicle category at
easy, moderate, and hard difficulty levels were 83.04%, 70.95%, and 63.55%, respectively. For the
pedestrian category, the APs were 67.05%, 59.28%, and 52.16%, and for the cyclist category, the APs
were 76.33%, 57.15%, and 53.66%. Compared to other Margin values, the setting of 0.2 achieved
higher precision in most cases, particularly standing out at the moderate difficulty level, indicating

that fine-tuning the Margin is crucial for enhancing model performance.

Table 3. Performance Metrics Across Different Margins.

Margin Car Pedestrian Cyclist

Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard
0 82.73 69.28 62.54 65.84 58.49 51.25 74.29 55.46 52.65
0.1 82.85 69.62 62.59 61.80 55.40 49.33 73.56 55.98 53.01
0.2 83.04 70.95 63.55 67.05 59.28 52.16 76.33 57.15 53.66
0.3 83.21 70.63 63.20 65.06 57.43 50.79 74.02 56.07 52.82

Ablation Study of Different Components. As shown in Table 4, these experiments demonstrated
how different combinations affect car detection performance. Our model utilized three key

components to enhance its performance: Triplet Loss (with a margin of 0.2), BAEM, and Focal Loss.
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The addition or removal of each component had a significant impact on the model's accuracy.

Initially, we considered a baseline model without any advanced loss functions or regularization
techniques, which achieved average precision (AP) scores of 82.15%, 68.55%, and 62.44% for the
Easy, Moderate, and Hard difficulty levels, respectively. With the sole addition of Focal Loss, the
model's performance improved across all difficulty levels, especially at Moderate and Hard levels,
with increases of 11.4% and 11.01%, respectively. This confirmed the effectiveness of Focal Loss in
dealing with hard-to-detect objects in imbalanced datasets. Next, we incorporated BAEM alone. This
method also showed a relative improvement at the Moderate and Hard levels, with APs reaching
79.33% and 72.86%. Although the increases were not as significant as with Focal Loss, it still
underscored the importance of regularization techniques in preventing overfitting. Considering the
impact of Triplet Loss, its standalone use resulted in a slight improvement in detection performance
at the Moderate level and a more substantial increase to 73.51% at the Hard level. Ultimately, by
combining all three techniques, our model exhibited significant performance improvements across all
difficulty levels, impressively reaching 84.35% on the Moderate level and 79.01% on the Hard level.
These results clearly demonstrated the crucial role of integrating these technologies in enhancing the

accuracy of the 3D detection model.

Table 4. Performance Metrics for Car Detection.

Triplet Loss (Margin=0.2) BAEM Focal Loss Easy Moderate Hard
- - - 82.15 68.55 62.44
- - v 82.85 79.95 73.45
- v - 82.06 79.33 72.86
v - - 82.88 71.02 73.51
v v v 89.14 84.35 79.01

5. Conclusions

The IFrustum-Pointnets introduced in this paper is groundbreaking in the field of the Industrial
Internet of Things (IloT), particularly in enhancing the accuracy of object detection in smart logistics
management. However, we recognize that there are areas where the model still falls short. First, the
current model's robustness when processing extremely sparse point cloud data needs enhancement;
second, the model's adaptability to objects of varying scales could be improved. In the future, we plan
to focus on two main areas for optimization: first, developing more efficient algorithms to enhance
the model's capability to handle sparse point clouds; second, exploring scale-adaptive mechanisms to
improve the model's detection precision for objects of various sizes. Through these efforts, we hope
to further advance the development of IloT and provide solid technological support for achieving

more intelligent industrial systems.
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