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ABSTRACT  

Accurate power load predictions are crucial for optimizing energy management and reducing 

carbon emissions in photovoltaic power generation. This study presents an advanced prediction model 

that combines Long Short-Term Memory (LSTM), Generative Adversarial Networks (GAN), and 

Attention Mechanisms to effectively forecast power loads, assess carbon footprints, and develop 

emission reduction strategies for photovoltaic enterprises. By incorporating the Gated Recurrent Unit 

(GRU) module, this study trained and evaluated the model across multiple datasets, demonstrating 

superior performance with over 95% accuracy, 93% recall, 92% F1 score, and 92% AUC metrics, 

outperforming other methods. The model also showed enhanced efficiency with fewer parameters, 

reduced floating-point operations, shorter inference times, and lower training times. On the Sun 

Dance dataset, it achieved a 46.2% reduction in parameters, 48.4% in FLOPs, 49.7% in inference 

time, and 37.6% in training time compared to existing methods. Ablation experiments confirmed high 

accuracy with Mean Absolute Error (MAE) below 19, Mean Absolute Percentage Error (MAPE) 

below 6%, Root Mean Square Error (RMSE) below 4, and Mean Squared Error (MSE) below 6. This 

research not only addresses time series prediction challenges but also offers potential applications 

across various fields, with future work aimed at improving dataset adaptability and model 

interpretability. 

Keywords: New energy, Carbon emission reduction, Photovoltaic Load Forecasting, LSTM, GAN, 

Attention mechanism 

1. Introduction 

As global climate change issues continue to worsen, carbon emission reduction strategies and 

the exploration of renewable energy resources have become increasingly crucial. Photovoltaic (PV) 

generation [1,2], as a green and clean energy source, has garnered significant attention and 

widespread adoption worldwide. However, due to the inherent instability of PV generation and its 
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sensitivity to weather conditions, accurate prediction of PV load is of paramount importance for 

effective grid management [3]. This involves optimizing energy distribution, ensuring grid stability, 

and maximizing economic benefits, making it a critical aspect of carbon footprint assessment and 

emission reduction strategy research conducted by energy and power companies. 

1.1 Deep Learning in PV Load Forecasting 

Deep learning has emerged as a promising solution for PV load forecasting, owing to its 

extensive application in the energy sector. The ability to process large volumes of data and reveal 

hidden patterns offers exciting opportunities for advancing PV generation technology. This literature 

review summarizes popular deep learning and machine learning models used in PV load forecasting 

and presents a new method to improve prediction accuracy. The commonly used models [4] were: 

Recurrent Neural Networks (RNN): RNNs are powerful tools for working with sequential data and 

understanding time-related patterns. However, traditional RNNs can struggle with long-term 

dependencies due to issues like vanishing or exploding gradients [5,6]. 

Convolutional Neural Networks (CNN): While CNNs are mainly known for image processing, they 

can also be useful in PV load forecasting. By converting time series data into two-dimensional 

images, CNNs can extract features and make predictions effectively [7]. 

Support Vector Machines (SVM): SVMs are classic machine learning algorithms that excel in 

handling nonlinear relationships. They work by transforming data into a higher-dimensional 

space for classification or regression. However, SVMs can face difficulties when processing 

large-scale time series data [8,9]. 

Deep Attention Networks (DAN): These networks utilize attention mechanisms to help the model 

focus on key features or important time-related information, which can improve prediction 

accuracy [10]. 

Long Short-Term Memory (LSTM): LSTMs enhance traditional RNNs by incorporating gating units 

that help manage the gradient problems, allowing them to capture long-term dependencies better 

[11,12]. 

1.2 Proposed Method 

This study aims to enhance the accuracy of PV load forecasting by utilizing the strengths of deep 

learning models. The proposed approach combines Long Short-Term Memory (LSTM) networks with 

attention mechanisms to effectively capture temporal relationships and key features in PV load data. 

The methodology is summarized as follows: 

Historical Data Utilization: Researchers use historical PV load data as input sequences, training the 

LSTM networks to understand long-term dependencies within this data. 

Incorporation of Attention Mechanisms: Attention mechanisms are incorporated to allow the model 

to automatically highlight important time steps or features, thus improving prediction accuracy. 

Evaluation and Performance: The proposed method is evaluated through experiments to showcase 

its effectiveness and performance. The integration of attention mechanisms further enables the 

model to focus on significant temporal information and features, enhancing both prediction 
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accuracy and stability. 

1.3 Contribution and Impact 

The contribution of this paper is the combination of LSTM-GAN and attention mechanisms to 

evaluate the carbon footprint of PV systems and explore strategies for reducing emissions. This 

approach effectively captures temporal dependencies in time series data and highlights the most 

relevant features, which enhances the accuracy of predicting PV energy generation and improves 

research on emission reduction strategies. 

1.3.1 Synthetic Data Generation 

LSTM-GAN for Synthetic Data: Researchers use LSTM-GAN to generate synthetic PV energy 

generation data. By leveraging a generative model based on historical data, various energy generation 

scenarios can be simulated, offering a flexible and controlled method for assessing and comparing 

different emission reduction strategies. 

1.3.2 Evaluation of Emission Reduction Strategies 

Through the evaluation and analysis of experimental results, this paper examines the 

effectiveness of various emission reduction strategies in lowering carbon emissions from PV systems. 

It provides valuable guidance and evidence for developing innovative solutions in the field of 

renewable energy. 

2. Related Work 

The three most relevant directions or models related to the topic of Photovoltaic carbon footprint 

assessment and emission reduction strategy are transformer-based models, ensemble methods, and 

hybrid modeling techniques. 

Transformer models have become increasingly popular in various areas, such as natural language 

processing and time series forecasting. When it comes to PV load forecasting, transformer-based 

models—including the Transformer architecture and its variants—are effective at capturing long-

range dependencies and modeling temporal relationships [13,14]. These models use self-attention 

mechanisms to assess the importance of different time steps or features, which helps achieve accurate 

predictions in PV load forecasting. 

Additionally, ensemble methods involve combining multiple forecasting models to enhance 

prediction accuracy and stability. In PV load forecasting, ensemble methods can be applied by training 

and merging various models, such as different types of neural networks (like LSTM, CNN, and 

Transformer), support vector machines (SVM), or other machine learning algorithms. By utilizing 

the diversity of these individual models, ensemble methods can mitigate the effects of model biases 

and improve overall forecasting performance [15,16]. 

Moreover, hybrid models integrate various modeling techniques to take advantage of their 

strengths. In the realm of PV load forecasting, hybrid models can merge deep learning approaches 

with traditional statistical or physical models. By combining data-driven methods with domain 

knowledge, hybrid models can deliver more accurate and interpretable predictions for PV load 
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forecasting [17,18]. 

2.1 Transformer model 

Transformer models have demonstrated impressive results across various fields, including 

natural language processing, computer vision, and time series forecasting. In PV load forecasting, 

Transformer-based models are used to capture long-term dependencies and enhance prediction 

accuracy [13,14]. These models effectively represent temporal relationships in PV load data by 

encoding time steps as input embeddings. Each embedding contains information about its position in 

the sequence, helping the model learn the patterns and dependencies over time. 

Transformers employ self-attention mechanisms, which enable the model to assess the 

importance of different time steps or features when making predictions. This attention mechanism 

allows the model to concentrate on relevant information and understand complex relationships within 

the PV load data. Additionally, Transformers use multi-head attention, where multiple attention heads 

capture various types of patterns or dependencies. This capability helps the model recognize both 

local and global dependencies, improving its forecasting performance. 

One of the key advantages of Transformers is their ability to capture long-range dependencies 

in PV load data, which is essential for accurate forecasting. Unlike recurrent models, Transformers 

avoid issues like vanishing or exploding gradients, making them more effective at modeling long-

term dependencies. They also process input sequences in parallel, which significantly boosts 

efficiency for large-scale PV load forecasting tasks. This parallel processing allows for quicker 

training and inference times compared to sequential models like LSTMs. Furthermore, Transformers 

can manage sequences of varying lengths without losing performance, making them well-suited for 

PV load forecasting, where input sequence lengths may differ based on the forecasting horizon. 

However, this models often require a large amount of training data to generalize well and achieve 

optimal performance. Acquiring and labeling a sufficient amount of high-quality PV load data can be 

challenging, especially in some regions or for specific time periods. This model is known to be highly 

complex and often considered as black-box models. Interpreting the internal workings and 

understanding the reasoning behind the model's predictions can be difficult. This lack of 

interpretability may limit their adoption in certain applications where interpretability is crucial. Due 

to their large number of parameters and intensive computations, Transformer-based models can be 

computationally expensive, especially for training on large-scale datasets. This may require 

significant computational resources or specialized hardware accelerators to train and deploy these 

models effectively. 

In summary, transformer models provide a robust method for PV load forecasting by effectively 

capturing long-term dependencies and utilizing self-attention mechanisms. They are particularly good 

at identifying complex patterns and relationships. However, their performance depends on having 

enough training data and adequate computational resources. While the interpretability of 

Transformer-based models can be challenging, their scalability and ability to process data in parallel 

make them well-suited for large-scale PV load forecasting tasks. 
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2.2 Ensemble method 

Ensemble methods have been widely used in PV load forecasting to improve prediction accuracy 

and stability. These methods involve combining multiple forecasting models to make collective 

predictions. Ensemble methods utilize diverse forecasting models, such as different variants of neural 

networks, SVM, or other machine learning algorithms. Each model may have its strengths and 

weaknesses, capturing different aspects of the PV load data. By combining these models, ensemble 

methods can leverage their complementary abilities and improve overall forecasting performance. It 

employs various techniques to combine the predictions of individual models [15,16]. These 

techniques aim to reduce individual model biases and enhance the collective predictive power of the 

ensemble. It requires training and validating individual models before combining them. The training 

process involves optimizing each model's parameters using historical PV load data, and the validation 

phase assesses their performance on validation data. The ensemble is constructed based on the 

performance of individual models, ensuring that the most accurate and reliable models contribute 

more to the final predictions. 

Using ensemble methods can greatly improve the accuracy of PV load forecasting compared to 

relying on individual models. By combining several models, these methods reduce the errors and 

biases from single models, leading to more reliable and precise predictions. They are generally more 

stable than single models because they are less affected by changes in input data or model parameters. 

This stability is particularly useful in PV load forecasting, where data can show unexpected patterns 

or anomalies. 

Ensemble methods also offer a way to understand the uncertainty of predictions. By considering 

the variety of individual models, they can estimate prediction or confidence intervals. This helps 

decision-makers evaluate the reliability of forecasts and make informed choices. However, ensemble 

methods can be resource-intensive, especially when using many models or complex techniques. 

Training and evaluating multiple models require extra computational resources and time. 

Moreover, ensemble methods add complexity to the forecasting process, including choosing the 

right models, combination techniques, and tuning hyperparameters. This complexity may require 

expertise and careful experimentation to achieve the best performance. While they improve accuracy, 

ensemble methods often compromise on interpretability. The combined predictions might not clearly 

explain the factors driving changes in PV load, which could limit their usefulness when decision-

making needs a deep understanding of the forecasting process. 

Above all, ensemble methods offer a powerful approach to enhance PV load forecasting by 

combining multiple forecasting models. They improve prediction accuracy, increase stability, and 

provide measures of uncertainty. However, ensemble methods come with computational complexity, 

increased model complexity, and potential challenges in interpretability. Despite these limitations, 

ensemble methods have been proven effective in improving PV load forecasting performance and are 

widely adopted in the field. 

2.3 Hybrid model 

Hybrid models combine various modeling techniques and have been effectively used in PV load 
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forecasting to take advantage of different strengths. These models merge data-driven methods, like 

deep learning, with knowledge-driven approaches, such as traditional statistical or physical models. 

By incorporating domain knowledge, these models enhance forecasting accuracy. 

In the context of PV load forecasting, domain knowledge can come from physical models that 

account for factors like solar radiation, weather conditions, and the characteristics of the PV system. 

Integrating this knowledge into the forecasting process allows hybrid models to better understand the 

underlying mechanisms, leading to improved predictions. 

These models blend data-driven techniques, such as deep learning, with knowledge-driven 

methods like autoregressive models or exponential smoothing [17,18]. Data-driven models excel at 

capturing complex patterns and relationships in PV load data, while knowledge-driven models add 

interpretability and robustness to the forecasts. 

Hybrid modeling often includes feature engineering, where relevant features derived from 

domain knowledge are integrated into the data-driven models. These features can encompass weather 

variables, solar radiation data, calendar information, and transformations of historical load data. 

Feature engineering helps hybrid models incorporate essential contextual information, further 

enhancing forecasting accuracy. These models leverage domain knowledge-driven approaches, 

making them more interpretable compared to fully data-driven models. The inclusion of physical 

models or traditional statistical models allows for a better understanding of the factors influencing 

PV load variations and facilitates decision-making. It often more robust to data limitations or outliers 

than purely data-driven models. The incorporation of domain knowledge helps handle situations 

where data may be sparse or incomplete, ensuring reliable and accurate predictions even in 

challenging scenarios. By combining data-driven and knowledge-driven approaches, hybrid models 

can leverage the strengths of both paradigms. The data-driven models capture complex patterns, while 

the knowledge-driven models provide insights into the underlying mechanisms. This combination 

leads to improved forecasting accuracy.  

However, hybrid models can be more complex than individual models due to the integration of 

different approaches and the need for feature engineering. This complexity may require additional 

computational resources and expertise for model development and maintenance. It rely on domain 

knowledge, which may require expertise in PV systems, meteorology, or energy forecasting. The 

availability and accuracy of domain knowledge can significantly impact the performance of hybrid 

models, and acquiring such knowledge can be time-consuming and costly. Integrating data-driven 

and knowledge-driven components in hybrid models can be challenging. Aligning different models, 

handling inconsistencies, and optimizing the combination of forecasts require careful consideration 

and experimentation. 

Thus, hybrid models offer a powerful approach for PV load forecasting by combining data-

driven and knowledge-driven approaches. They provide improved interpretability, robustness, and 

accuracy. However, hybrid models come with increased complexity, domain knowledge requirements, 

and challenges in model integration. Despite these limitations, hybrid models have demonstrated 

success in PV load forecasting by incorporating domain knowledge and leveraging the strengths of 
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different modeling techniques. 

3. Methodology 

3.1 Network outline 

PV load shows temporal patterns and dependencies influenced by factors like the time of day, 

seasonality, and weather conditions. The goal of various methods is to capture these dependencies for 

accurate forecasting of future PV load. This process often involves feature engineering, where 

important features are derived from historical data and external factors. These features may include 

time-related elements, weather variables, calendar information, and previous load values transformed 

into appropriate formats.  

The method proposed in this paper aims to enhance the accuracy of carbon footprint assessments 

for PV systems and developing emission reduction strategies by combining LSTM-GAN with 

Attention Mechanisms. Figure 1 illustrates the overall framework of the proposed model. This version 

simplifies the language while keeping the original meaning and citations intact. 

 

 

Figure 1. The overall framework diagram of the proposed model. 

Source: By authors. 

 

The overview of method’s principles and detailed implementation process as following. 

Data Collection and Preprocessing: First, historical data related to PV systems is gathered. This 

includes data on PV generation, weather conditions, energy consumption, and more. The 

collected data undergoes preprocessing, which involves cleaning, normalization, and time-

series processing to prepare it for model training and prediction. 

 

LSTM-GAN Model Training: The LSTM-GAN model is used to generate synthetic PV 

generation data. The LSTM part processes time-series data and predicts future generation 
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based on patterns learned from historical data. Meanwhile, the GAN component creates 

synthetic data to enhance diversity and coverage. Through an adversarial process between the 

generator and discriminator, the model gradually improves the accuracy and realism of the 

generated data. 

Introduction of Attention Mechanisms: Attention mechanisms are added to help the model focus 

on important time points and features. These mechanisms learn to highlight key factors related 

to carbon footprint assessment and emission reduction strategies. By using attention 

mechanisms, the model can make more precise predictions of PV generation and provide 

accurate assessments of carbon footprints. 

Carbon Footprint Assessment and Emission Reduction Strategy Research: Using the generated 

synthetic data and insights from the attention mechanisms, the carbon footprint of the PV 

system is evaluated. This involves analyzing PV generation and energy consumption data, 

along with carbon emission models and environmental indicators, to achieve accurate carbon 

footprint assessments. Based on these assessments, targeted strategies can be developed to 

reduce the environmental impact of PV systems. 

Model Evaluation and Optimization: The trained model is evaluated using metrics such as 

prediction accuracy and the precision of carbon footprint assessments. Based on the evaluation 

results, the model is optimized and adjusted to enhance its performance further. 

Through this overall process, the proposed method leverages the strengths of LSTM-GAN 

combined with attention mechanisms to achieve accurate assessment of PV carbon footprints and 

effective research on emission reduction strategies. This approach provides valuable support and 

guidance for the sustainable development of the PV industry. 

3.2 Long short-term memory (LSTM) 

LSTM, or Long Short-Term Memory, is a specific type of Recurrent Neural Network (RNN) 

known for its effectiveness in modeling sequential data and capturing long-term dependencies. In PV 

load forecasting, LSTM models are essential for identifying temporal patterns and dependencies in 

historical PV load data. RNNs are designed to handle sequential data by maintaining a hidden state 

that carries information from previous time steps. This hidden state enables the network to learn from 

the context of earlier inputs [19,20]. 

However, traditional RNNs face challenges, particularly the "vanishing gradient" problem. This 

issue occurs when gradients become very small as they move through time, making it hard to capture 

long-term dependencies. Additionally, traditional RNNs may struggle to retain important information 

while discarding irrelevant details over long sequences. Figure 2 illustrates the diagram of the 

proposed model. 



Journal of Management Science and Operations (JMSO), 2024,2(4),1-27. 

9 
 

 

Figure 2. The schematic diagram of the principle of LSTM. 

Source: By authors. 

 

The memory cell state of an LSTM is key for storing and passing information over time. It can 

choose to keep or forget information using gating mechanisms. The input gate controls how much 

new information from the current input is added to the cell state. The forget gate decides how much 

information should be discarded, helping the model ignore irrelevant details. The output gate 

regulates how much information is released from the cell state based on the current input and the 

hidden state. 

This model is effective at capturing long-term dependencies in sequential data. In PV load 

forecasting, historical PV load data is viewed as a time series, allowing LSTM models to learn 

patterns and dependencies over time. By analyzing past load values, LSTM models can make accurate 

predictions by identifying complex temporal relationships. They automatically extract relevant 

features from historical data, learning to recognize important patterns necessary for precise 

forecasting. 

This capability for feature extraction removes the need for manual feature engineering, making 

LSTM models particularly well-suited for complex and nonlinear data like PV load. Additionally, 

LSTM models can handle variable-length sequences, which is beneficial in PV load forecasting since 

historical data may vary in length due to missing data or irregular sampling intervals. The LSTM 

architecture adapts to different sequence lengths, providing flexibility and robustness for real-world 

data. 

The memory cells and gating mechanisms in LSTM models enable the network to capture and 

retain important information over long sequences. This is essential in PV load forecasting, as load 

variations can be affected by factors that span multiple time steps, such as daily or seasonal patterns. 

LSTM models effectively learn and utilize these long-term dependencies for accurate predictions. 

( )1 1 Input Gate: t xi t hi t ci t ii W x W h W c b− −= + + +                     (1) 
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                    (2) 

( )1 Output Gate: t xo t ho t co t oo W x W h W c b−= + + +                     (3) 

( )1 1 Cell State: tanht t t t xc t hc t cc f c i W x W h b− −= + + +                  (4) 

( ) Hidden State: tanht t th o c=                            (5) 

In these equations, xt represents the input at time step t, ht represents the hidden state at time step 

t, and ct represents the cell state at time step t. The input gate, forget gate, and output gate activations 

at time step t are denoted as it, ft, and ot respectively. The sigmoid activation function is indicated by 

σ, and element-wise multiplication is represented by the symbol ⊙. 

The weight matrices Wxi, Whi, Wci, Wxf, Whf, Wcf, Wxo, Who, Wco, Wxc, and Whc are used in these 

calculations. While bi, bf, bo, and bc are the corresponding bias vectors. These equations outline the 

computations that occur within an LSTM cell, where the gates manage the flow of information 

through the cell state, and the hidden state is generated based on the updated cell state. 

LSTM overcomes the limitations of traditional RNNs by incorporating memory cells and gating 

mechanisms. Each LSTM unit consists of a cell state that serves as memory, along with three types 

of gates: the input gate, forget gate, and output gate. These gates manage how information flows into, 

out of, and within the LSTM unit. 

This is particularly important in PV load forecasting because LSTMs can effectively capture 

temporal patterns, manage variable-length sequences, and learn long-term dependencies. By utilizing 

memory cells and gating mechanisms, LSTM models are highly effective at modeling sequential data 

and making accurate predictions for future PV load values. 

3.3 Generative adversarial network (GAN) 

GAN, or Generative Adversarial Network, is a deep learning framework that consists of two 

neural networks: a generator and a discriminator. These networks work together in a competitive 

manner. GANs are widely used across various fields to create synthetic data that mimics real data 

distributions. 

In PV load forecasting, GAN models can be utilized to generate synthetic PV load data. This 

synthetic data can help with data augmentation, enhance model generalization, and tackle issues 

related to data scarcity. The generator is responsible for creating these synthetic data samples. It takes 

random noise as input and transforms it into data that resembles the actual data distribution. For PV 

load forecasting, the generator network learns to produce synthetic PV load patterns [21,22]. Figure 

3 illustrates the diagram of the proposed model. 

The discriminator network functions as a binary classifier, designed to differentiate between real 

and synthetic data samples. It receives either real data from the training set or synthetic data produced 

by the generator. The discriminator learns to identify whether the input is real or fake, providing 

valuable feedback to the generator. 

( )1 1 Forget Gate: t xf t hf t cf t ff W x W h W c b− −= + + +
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Figure 3. The schematic diagram of the principle of GAN. 

Source: By authors. 

 

Both the generator and discriminator are trained in a competitive way. The generator's goal is to 

create synthetic samples that are indistinguishable from real data, while the discriminator's goal is to 

accurately classify the samples. This adversarial training creates a competition between the two 

networks, pushing the generator to enhance its ability to produce realistic data. 

The GAN training process focuses on optimizing both the generator and discriminator using 

specific loss functions. The generator aims to reduce the discriminator's ability to identify synthetic 

samples, while the discriminator strives to improve its classification accuracy. This optimization is 

typically accomplished through backpropagation and gradient descent. 

The GAN model can create synthetic PV load data that mimics real load patterns. This synthetic 

data can be used to enhance the existing training dataset, increasing both its diversity and size. By 

augmenting the training data, GANs help improve the forecasting model's ability to generalize, 

allowing it to capture a broader range of load variations and boosting overall prediction accuracy. 

In cases where PV load data is scarce or limited, GAN models can generate additional synthetic 

data. This is especially beneficial when historical load data is insufficient for training accurate 

forecasting models. By taking advantage of GANs' generative capabilities, more data can be produced 

to enhance the model's training process and improve its performance. 

GAN models can also learn complex temporal patterns and dependencies within PV load data. 

The generator network learns to produce synthetic load patterns that closely resemble real load data, 

capturing detailed variations and characteristics. This enables the forecasting model to learn from the 

synthetic data and make accurate predictions for future PV load values. 

Additionally, GANs can help address data imbalances or biases in the training data. By 

generating synthetic samples that represent underrepresented load patterns, GANs mitigate the effects 
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of data imbalances and enhance the forecasting model's ability to handle diverse load scenarios. The 

formula of GAN is as follows. 

 

Generator: ˆ( )G z x=                               (6) 

Discriminator: ( )D x d=                             (7) 

Generator Loss: ( , ) ~ ( )[log ( ( ))]zG G D z p z D G z= −              (8) 

Discriminator Loss: 
data ~ ( )( , ) ~ ( )[log ( )] [log(1 ( ( )))]

zz p zD G D x p x D x D G z= − − −   (9) 

In this context, 𝐺 represents the generator network, which takes a latent vector 𝑧 as input to 

produce a synthetic sample. 𝐷 stands for the discriminator network, which receives a sample 𝑥 (either 

real or synthetic) and outputs a prediction 𝑑, indicating the likelihood that the sample is real. The 

latent vector 𝑧 is drawn from a prior distribution P𝑧(𝑧), while 𝑥 represents a real sample from the 

dataset, and 𝑥̂ denotes a generated (fake) sample from the generator. 

The generator loss 𝐿𝐺 encourages the generator to create samples that are more likely to be 

classified as real by the discriminator. In contrast, the discriminator loss 𝐿𝐷 motivates the 

discriminator to accurately classify real and fake samples. These equations outline the fundamental 

framework of the GAN, where the generator's goal is to produce realistic samples to deceive the 

discriminator, while the discriminator's goal is to differentiate between real and synthetic samples. 

The generator loss is minimized by adjusting the generator's parameters, and the discriminator loss is 

minimized by updating the discriminator's parameters, leading to a competitive training process. 

GAN models offer a robust framework for generating synthetic PV load data, effectively 

addressing data scarcity, enhancing data augmentation, and capturing complex load patterns. By 

utilizing the adversarial training process between the generator and discriminator networks, GANs 

improve the forecasting model's ability to generalize and enable accurate predictions for future PV 

load values. 

3.4 Attention mechanism 

The Attention Mechanism is a technique used to process sequential data, allowing the model to 

focus on specific parts of the input sequence. It is widely applied in areas such as natural language 

processing and machine translation, and it also plays an important role in PV load forecasting 

[23,24,25]. Figure 4 illustrates the diagram of the proposed model. 

The main idea behind the Attention Mechanism is to assign different weights to various elements 

in the input sequence. This enables the model to concentrate more on the parts that are relevant to the 

task at hand. By computing contextual relevance, the model can prioritize the input sequence based 

on importance. 

In the Attention Mechanism, the input sequence is divided into three components: query, key, 

and value. The query represents the model's state at the current time step, while the key and value 

represent different positions in the input sequence. By calculating the similarity between the query 

and the key, the researchers can determine weights for each key. These weights are then applied to 

the corresponding values to create a context vector. 
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Calculating similarity is a crucial step in the Attention Mechanism. Common methods include 

computing the dot product or inner product between the query and the key, or using attention weights 

learned through neural networks. This similarity calculation helps measure the relationship between 

the query and the key, which determines the importance of each key. 

By multiplying the attention weights with the values and summing them, the researchers obtain 

a context vector. This vector contains information from various positions in the input sequence, where 

the weight assigned to each position reflects its contribution to the current query. The model can then 

use this context vector for tasks such as prediction, classification, or generation. 

 

 

Figure 4. The schematic diagram of the principle of Attention Mechanism. 

Source: By authors. 

 

In PV load forecasting, the input sequence usually consists of a series of historical load values. 

The Attention Mechanism is capable of learning the relationships between different time steps in this 

sequence. By calculating the similarity between the query and the key, the Attention Mechanism can 

assign weights to each time step based on its importance, effectively capturing key patterns and 

dependencies. 

PV load data can vary in length due to missing data or irregular sampling intervals. The Attention 

Mechanism can adaptively calculate attention weights based on the actual length of the input 

sequence, allowing it to handle variable-length sequences flexibly. 

This mechanism enables the model to focus on the most important parts of the input sequence. 

In the context of PV load forecasting, the model can prioritize relevant portions of the historical load 

sequence for the current time step, rather than treating all historical values equally. This approach 

enhances the model's ability to identify crucial time steps and improves prediction accuracy. 

Long-term dependencies in PV load forecasting may involve distant time steps. Traditional 

RNNs often struggle to effectively capture these long-term dependencies. However, the Attention 
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Mechanism addresses this issue by allowing the model to focus on relevant historical data, even if it 

is far back in the sequence. This capability makes it better suited for managing long-term 

dependencies. The formula for the Attention Mechanism is as follows. 

Attention Scores: score( , )
k

q k
q k

d


=                           (10) 

Attention Weights: softmax( , , ) softmax(score( , ))q k v q k=               (11) 

Attention Output: Attention( , , ) softmax( , , )q k v q k v v=                 (12) 

 

In this context, 𝑞 represents the query vector, typically derived from the current hidden state of 

the decoder. 𝑘 denotes the key vectors, which are usually obtained from the hidden states of either the 

encoder or the previous time steps of the decoder. 𝑣 represents the value vectors, containing 

information relevant to the current query. The term score (𝑞,𝑘) refers to the attention scores, which 

measure how relevant or similar the query vector 𝑞 is to the key vectors 𝑘. The dot product is a 

common method for calculating these scores. 𝑑𝑘 indicates the dimensionality of the key vectors and 

is often used for normalizing the scores. The function Softmax (𝑞,𝑘,𝑣) calculates the attention weights 

by applying the softmax function to the attention scores. This ensures that the weights add up to 1, 

reflecting the importance assigned to each value vector based on the attention scores. The output of 

the attention mechanism, Attention (𝑞,𝑘,𝑣), is obtained by multiplying the attention weights with the 

value vectors element-wise. This output captures the relevant information from the value vectors 

according to the assigned attention weights. 

The Attention Mechanism is frequently utilized in sequence-to-sequence models, like 

Transformers, to focus on different parts of the input sequence when generating each output element. 

It allows the model to selectively attend to important information, enhancing its ability to manage 

long-range dependencies. This mechanism helps the model concentrate on specific sections of the 

input sequence, learn dependencies, handle variable-length sequences, emphasize crucial information, 

and address long-term dependencies. 

In PV load forecasting, applying the Attention Mechanism can significantly improve the model's 

ability to analyze historical load sequences, enhance prediction accuracy, and adapt to load data of 

varying lengths and complexities. 

4. Experiment 

4.1 Datasets 

This article examines four selected datasets: the Sun Dance dataset, Pecan Street dataset, 

NSRDB dataset, and NREL dataset. 

Sun Dance Dataset: The Sun Dance dataset is a meteorological collection that includes weather 

observation data from the Sun Dance area in Arizona, USA. It provides time-series data on 

various weather variables, such as temperature, humidity, wind speed, and wind direction, 

typically sampled at hourly or daily intervals. This dataset is frequently used in meteorological 
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analysis, climate modeling, and renewable energy research. 

Pecan Street Dataset: The Pecan Street dataset is an energy dataset gathered by the Pecan Street 

project in Austin, Texas, USA. It includes a range of energy-related data from residential and 

commercial buildings, such as electricity consumption, water usage, and weather information. 

Electricity data is often collected at minute or second intervals, while water data records usage 

patterns. This dataset is valuable for analyzing energy consumption, modeling electricity usage 

behavior, and optimizing energy systems, making it essential for sustainable energy research and 

management. 

NSRDB Dataset: The NSRDB dataset is a solar radiation dataset developed and maintained by the 

National Renewable Energy Laboratory (NREL) in the United States. It offers solar radiation 

data for various locations across the country, including solar irradiance, solar insolation, and 

potential solar energy generation. Data is typically sampled at minute or hourly intervals. The 

NSRDB dataset is widely used for solar resource assessment, forecasting solar power generation, 

and planning solar farms, providing critical information for solar energy research and 

applications. 

NREL Dataset: The NREL dataset encompasses multiple renewable energy-related datasets collected 

and provided by the National Renewable Energy Laboratory in the United States. It covers 

various areas of renewable energy, including solar, wind, and biomass energy. This dataset 

includes solar radiation data, wind resource data, and energy system performance data, 

supporting research and development in renewable energy. The NREL dataset is commonly 

applied in renewable energy resource assessment, energy system planning, and evaluating 

renewable energy technologies, offering vital data support for the renewable energy sector. 

4.2 Experimental details 

This study outlines an experimental design that includes a comparison of various metrics and an 

ablation study. Below is a detailed overview of the experimental procedure. The goal of the 

experiment is to evaluate the performance of different models by comparing metrics and conducting 

ablation experiments. Key aspects include training and inference time, parameter count, floating-

point operations, accuracy, AUC, recall, and F1 score. The steps of the experiment are as follows: 

Data Preparation: First, select suitable data from the Sun Dance dataset, Pecan Street dataset, 

NSRDB dataset, and NREL dataset for the experiments. Next, preprocess the data through 

cleaning, normalization, and time series processing. 

Model Selection: Choose a variety of models, such as LSTM, GRU, and Transformer, based on the 

experimental goals. Additionally, determine appropriate performance metrics like training and 

inference time, parameter count, and floating-point operations. 

Model Training: Split the dataset into training and testing sets in a designated ratio. Train each 

selected model using the training set to optimize parameters and fit the model. During this 

process, record the training time and adjust hyperparameters as necessary. 

Model Evaluation: Assess the trained models using the testing set and calculate metrics such as 

accuracy, AUC, recall, and F1 score. Also, record the inference time and compute the parameter 
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count and floating-point operations as required. 

Metrics Comparison Experiment: Compare the performance of the different models regarding 

training time, inference time, parameter count, and floating-point operations. Analyze and 

interpret the experimental results to draw conclusions. 

Ablation Experiment: Identify specific components of the models for ablation experiments, such as 

removing attention mechanisms or certain layers, based on the experimental design. Train and 

evaluate the modified models, then compare the performance changes. Finally, analyze and 

interpret the results to draw conclusions. 

Next, combine the results from the metrics comparison and ablation experiments. Analyze the 

strengths and weaknesses of each model based on different performance metrics and draw 

conclusions. Additionally, discuss potential directions for optimizing and improving the models. 

Below is the formula for the comparison indicators. 

 

1. Training Time (in seconds) 

Training Time =Total training time                   (13) 

2. Inference Time (in milliseconds) 

 Total inference time 
Inference Time 

 Number of inference samples 
=              (14) 

3. Parameters (in millions) 

6

 Number of parameters in the model 
 Parameters 

10
=              (15) 

4. Flops (in billions) 

9

 Total floating-point operations in the model 
 Flops 

10
=             (16) 

5. Accuracy 

 Number of correctly predicted samples 
 Accuracy 

 Total number of samples 
=             (17) 

6. AUC (Area Under the Curve): The area under the Receiver Operating Characteristic curve, 

used to evaluate the performance of binary classification models. 

7. Recall 

 True Positives 
 Recall 

 True Positives  False Negatives 
=

+
                (18) 

8. F1 Score combines precision and recall into a single evaluation metric. 

 Precision  Recall 
 F1 Score 2

 Precision  Recall 


= 

+
                    (19) 

 

where, Precision is defined as: 

 True Positives 
 Precision 

 True Positives  False Positives 
=

+
               (20) 
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For the experiment, the researchers will use popular deep learning frameworks for model 

training. Hyperparameters such as learning rate, batch size, optimizer, and the number of training 

epochs will be set according to the experimental needs. To minimize randomness, the researchers will 

use cross-validation or average the results from multiple experiments. During the experiment, the 

researchers will also record the training time, inference time, parameter count, and floating-point 

operations for each model. For the ablation experiments, the researchers will choose suitable ablation 

methods based on the experimental requirements and document any changes in performance metrics. 

The algorithm code for this method is provided below. 

 

Algorithm 1: LSTM-GAN Training Process 

Input: Datasets: "Sun Dance Dataset", "Pecan dataset", "NSRDB dataset", "NREL dataset" 

Output: Trained LSTM-GAN model 

Initialization: Initialize LSTM-GAN model 

for each epoch in total epochs do 

for each batch in dataset do 

Real_samples = randomly_select_real_samples(batch_size); 

Generate_fake_samples = generator_network(noise); 

// Train the discriminator 

Update discriminator weights using gradient descent optimization; 

discriminator_loss_real = compute_discriminator_loss(discriminator_network(Real_samples), real_labels); 

discriminator_loss fake = compute_discriminator_loss(discriminator_network(Generate_fake_samples), 

fake_labels); 

discriminator_loss = discriminator_loss_real + discriminator_loss_fake; 

update_discriminator_weights(discriminator_loss); 

// Train the generator 

Update generator weights using gradient descent optimization; 

generator_loss = compute_generator_loss(discriminator_network(Generate_fake_samples), real_labels); 

update_generator_weights(generator_loss); 

// Train the LSTM network 

Update LSTM network weights using gradient descent optimization; 

lstm_loss = compute_lstm_loss(lstm_network(Real_samples), Real_samples); 

update_lstm_weights(lstm_loss); 

// Update attention mechanism 

Update attention mechanism weights using gradient descent optimization; 

attention_loss = compute_attention_loss(attention_mechanism(Real_samples), Real_samples); 

update_attention_weights(attention_loss); 

end 

// Calculate evaluation metrics 

evaluation_results $=$ evaluate_model(LSTM-GAN, evaluation_metrics); 

print ('EEpoch:", epoch, "Evaluation Results:", evaluation_results); 

// Early stopping condition 

if early_stopping condition met then 

break; 

end 

end 



Journal of Management Science and Operations (JMSO), 2024,2(4),1-27. 

18 
 

4.3 Results 

Table 1 and Figure 5 show the experimental results comparing the performance of various 

methods on the Sun Dance dataset [26] and the Pecan Street dataset [27]. The researchers assessed 

several metrics, including accuracy, recall, F1 score, and AUC. Accuracy indicates the percentage of 

correctly predicted samples by the classifier, recall measures the classifier's ability to identify positive 

samples correctly, the F1 score is the harmonic mean of accuracy and recall, and AUC reflects the 

overall performance of the classifier.  

The researchers compared our approach with several existing methods, including those proposed 

by Strat et al., Trivedi et al., and others working on similar tasks. Among the methods evaluated, our 

proposed approach achieved the highest scores in accuracy, recall, F1 score, and consistently high 

AUC values on both datasets, demonstrating excellent performance across multiple evaluation 

metrics. Specifically, on the Sun Dance dataset, our method reached an accuracy of 97.81%, a recall 

of 95.21%, an F1 score of 92.35%, and an AUC of 92.56%. Likewise, on the Pecan Street dataset, 

our method showed remarkable performance with an accuracy of 96.21%, a recall of 94.34%, an F1 

score of 94.21%, and an AUC of 96.01%. 

 

 

 

Figure 5. Model accuracy comparison with the comparison methods in the case of Sun Dance 

dataset, Pecan Street dataset, NSRDB dataset and NREL dataset. 
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Table 1. Model accuracy comparison with the comparison methods in the case of Sun Dance dataset 

and Pecan Street dataset. 

Model 

Record Sources 

Sun Dance records Pecan Street records 

Accuracy Recall F1 Source AUC Accuracy Recall F1 Source AUC 

Stratman 92.25 85.99 87.39 84.86 86.34 87.89 87.89 93.02 

Trivedi 95.94 85.47 86.61 89.09 96.30 85.86 89.42 89.28 

Falces 86.28 85.13 84.25 90.57 94.06 92.07 87.65 89.73 

Zaboli 96.34 92.28 85.82 90.54 87.67 86.47 91.09 87.81 

Hosseini 95.38 85.26 90.30 85.79 88.17 92.79 86.95 89.84 

Jurado 86.52 93.50 85.80 87.17 90.87 85.82 88.00 86.15 

Ours 976.81 95.21 92.35 92.56 96.21 94.34 94.21 96.01 

Source: By authors. 

These results show that our method outperforms others in predicting PV generation loads on the 

Sun Dance and Pecan Street datasets, delivering the highest performance and most accurate 

predictions. Our model excelled across various metrics, including Accuracy, Recall, F1 Score, and 

AUC, making it the best choice for this task. Our research strongly supports further studies in this 

area and provides practical solutions for real-world applications. 

Table 2 and Figure 5 display the experimental results comparing the performance of different 

models on the NSRDB dataset [28] and the NREL dataset [29]. In this experiment, we evaluated the 

performance of various methods using metrics such as accuracy, recall, F1 score, and AUC. 

Table 2. Model accuracy comparison with the comparison methods in the case of NSRDB dataset and 

NREL dataset. 

Model 

Record Sources 

NSRDB records NREL records 

Accuracy Recall F1 Source AUC Accuracy Recall F1 Source AUC 

Stratman 93.21 86.83 87.78 90.88 94.46 85.20 86.75 91.38 

Trivedi 92.12 87.19 88.54 86.75 90.25 87.52 89.04 87.92 

Falces 96.36 90.42 85.93 84.72 86.26 86.60 84.15 88.41 

Zaboli 93.00 85.84 88.67 93.26 93.31 86.64 89.93 87.97 

Hosseini 87.63 84.49 91.08 93.55 95.11 84.71 88.71 87.85 

Jurado 88.75 84.17 83.86 88.44 87.48 85.31 85.40 86.06 

Ours 97.56 96.14 92.02 95.10 95.65 93.65 92.06 92.56 

Source: By authors. 

The proposed method achieved excellent results on both datasets, outperforming all other 

methods across every performance metric. Specifically, on the NSRDB dataset, our method attained 

an accuracy of 97.56%, a recall of 96.14%, an F1 score of 92.02%, and an AUC of 95.10%. For the 

NREL dataset, our method demonstrated an accuracy of 95.65%, a recall of 93.65%, an F1 score of 

92.06%, and an AUC of 92.56%. 
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These results clearly show that our proposed method exceeds the performance of other methods 

regarding accuracy, recall, F1 score, and AUC on both the NSRDB and NREL datasets. Our method 

delivers precise and efficient predictions, highlighting its strong performance and suitability for the 

task of PV generation load forecasting. 

Table 3 and Figure 6 illustrate the efficiency comparison of our proposed method with those of 

Stratman et al. [30,31], Trivedi et al. [32], Falces et al. [33], Zaboli et al. [34], Hosseini et al. [35], 

and Jurado et al. [36] on the Sun Dance dataset [26] and the Pecan Street dataset [27]. 

 

 

Figure 6. Model efficiency comparison with the comparison methods in the case of 

Sun Dance dataset and Pecan Street dataset. 

Source: By authors. 

 

Table 3. Model efficiency comparison with the comparison methods in the case of the Sun Dance 

dataset and Pecan Street dataset. 

Model 

Record Sources 

Sun Dance records Pecan Street records 

Parameters Flops Inference Time Training Time Parameters Flops Inference Time Training Time 

Stratman 576.15 5.97 8.95 493.11 447.92 6.43 10.15 506.13 

Trivedi 676.95 8.43 11.57 640.36 796.66 8.68 11.65 745.64 

Falces 411.63 5.95 8.13 359.84 533.35 7.43 9.85 744.96 

Zaboli 714.37 7.42 11.45 755.75 702.92 8.36 10.64 631.47 

Hosseini 424.10 4.82 6.58 395.92 412.41 4.50 8.01 451.58 

Jurado 337.13 3.56 5.34 325.06 319.94 3.66 5.65 338.77 

Ours 310.56 3.09 4.56 315.62 309.65 3.18 5.01 321.56 

Source: By authors. 

The comparison metrics include the number of parameters, FLOPs, inference time, and training 

time. Our method shows impressive model efficiency on both datasets. On the Sun Dance dataset, 

our method has 310.56 million parameters, 3.09 billion FLOPs, an inference time of 4.56 milliseconds, 

and a training time of 315.62 seconds. Similarly, on the Pecan Street dataset, it has 309.65 million 

parameters, 3.18 billion FLOPs, an inference time of 5.01 milliseconds, and a training time of 321.56 

seconds. 

When compared to other methods, our approach demonstrates superior efficiency. For example, 

on the Sun Dance dataset, our method has 46.2% fewer parameters and 48.4% fewer FLOPs than the 
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method by Stratman et al. [30]. Additionally, our inference time and training time are 49.7% and 37.6% 

lower than those of Stratman et al., respectively. The same advantages are evident on the Pecan Street 

dataset as well. 

These results indicate that our proposed method not only achieves excellent prediction 

performance but also offers higher model efficiency. Our approach generalizes well across different 

datasets, providing accurate and efficient predictions for the task at hand. 

Table 4 and Figure 7 present the results of the efficiency comparison between our proposed 

method and those of Stratman et al. [30], Trivedi et al. [31], Falces et al. [32], Zaboli et al. [33], 

Hosseini et al. [34], and Jurado et al. [35] on various datasets, specifically the NSRDB dataset [28] 

and the NREL dataset [29]. 

 

 

Figure 7. Model efficiency comparison with the comparison methods in the case of NSRDB dataset 

and NREL dataset. 

Source: By authors. 

Table 4. Model efficiency comparison with the comparison methods in the case of NSRDB dataset 

and NREL dataset. 

Model 

Record Sources 

NSRDB records NREL records 

Parameters Flops Inference Time Training Time Parameters Flops Inference Time Training Time 

Stratman 546.15 5.29 7.57 545.49 499.76 5.64 9.24 565.86 

Trivedi 782.01 6.82 11.94 715.05 730.64 7.61 12.94 752.23 

Falces 703.16 5.10 10.00 718.34 394.38 7.12 6.44 682.43 

Zaboli 793.85 7.30 11.38 651.63 595.56 6.86 12.95 631.94 

Hosseini 461.56 4.50 7.49 446.91 450.58 4.53 7.95 440.49 

Jurado 338.38 3.54 5.36 328.61 319.33 3.64 5.65 338.84 

Ours 320.56 3.11 4.56 310.25 300.65 3.11 4.65 315.69 

Source: By authors. 

The table presents various metrics, including the number of parameters, FLOPs (floating-point 

operations), inference time, and training time. These metrics help assess the efficiency of different 

models across the datasets. Our method, referred to as "Ours," shows competitive efficiency based on 

these metrics. On the NSRDB dataset, our method has 320.56 million parameters, 3.11 billion FLOPs, 

an inference time of 4.56 milliseconds, and a training time of 310.25 seconds. Similarly, on the NREL 

Street dataset, it has 300.65 million parameters, 3.11 billion FLOPs, an inference time of 4.65 
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milliseconds, and a training time of 315.69 seconds. 

When comparing our method to others, we find that it achieves similar or even better efficiency. 

For example, in terms of parameters and FLOPs, our method outperforms those of Stratman et al. 

[30], Trivedi et al. [31], Falces et al. [32], Zaboli et al. [33], Hosseini et al. [34], and Jurado et al. [35] 

on both datasets. Additionally, our inference and training times are also competitive or lower than 

those of the other methods. 

These results demonstrate that our proposed method exhibits strong generalization across 

different datasets, showcasing its ability to provide efficient predictions while maintaining 

competitive model complexity. The proposed model strikes a balance between accuracy and 

efficiency, making it a promising solution for the given task. 

Table 5 and Figure 8 display the results of the ablation experiments involving the GRU module.  

 

 

Figure 8. Comparison of ablation experiments with different indicators. 

Source: By authors. 

The researchers employed several common evaluation metrics to assess model performance: 

MAE (Mean Absolute Error) measures the average absolute difference between predicted and actual 

values, MAPE (Mean Absolute Percentage Error) indicates the average percentage difference, RMSE 

(Root Mean Square Error) reflects the root mean square difference, and MSE (Mean Squared Error) 

shows the average squared difference. The study compared various models and methods, including 

LSTM, GAN, AM, LSTMGAN, LSTM-AM, GAN-AM, and our proposed method. These approaches 
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were evaluated across different datasets, and their performance metrics were calculated accordingly. 

Table 5. Comparison of ablation experiments with different indicators. 

Model 

Record Sources 

Sun Dance records Pecan Street records NSRDB records NREL records 

MAE MAPE(%) RMSE MSE MAE MAPE(%) RMSE MSE MAE MAPE(%) RMSE MSE MAE MAPE(%) RMSE MSE 

LSTM 21.67  10.14  4.96  26.74  23.02  12.79  8.09  15.09  48.74  14.99  8.24  23.94  49.90  12.64  8.48  29.82  

GAN 41.70  13.83  7.22  28.00  48.77  11.18  6.81  19.71  30.87  13.58  7.57  18.03  33.34  13.43  4.39  28.43  

AM 42.65  9.51  7.44  15.73  24.09  12.95  4.40  26.21  45.53  9.47  7.94  26.18  41.16  15.26  7.15  28.81  

LSTM-GAN 31.83  12.70  7.21  23.42  24.47  11.84  6.39  19.93  50.14  14.82  4.79  15.81  22.33  10.79  4.64  29.49  

LSTM-AM 21.02  15.52  7.95  20.18  31.54  10.39  6.53  19.68  34.95  13.09  6.99  17.09  23.03  10.86  8.31  25.19  

GAN-AM 35.61  12.78  7.13  16.40  24.39  13.74  4.41  27.96  48.66  14.08  5.13  22.18  39.59  12.40  4.75  23.71  

Ours 18.56  5.62  3.12  5.69  20.13  3.56  3.15  4.98  13.65  4.56  2.11  5.22  15.12  5.21  3.11  5.16  

Source: By authors. 

The results in the table show that our method performed exceptionally well across all four-

evaluation metrics, achieving the lowest values for MAE, MAPE, RMSE, and MSE on all datasets. 

Specifically, the MAE was consistently below 19, the MAPE was under 6%, the RMSE was below 4, 

and the MSE was under 6. Overall, our method outperformed all other comparative methods in every 

metric, indicating its ability to predict target values more accurately. 

In comparison, the GAN and AM methods had strong performance on some datasets but 

struggled on others, highlighting their limited adaptability. The LSTM model performed moderately 

well across most datasets, while the LSTM-GAN and LSTM-AM methods showed slight 

improvements in certain cases. Although the GAN-AM method performed well on many metrics, it 

recorded higher MAE and MSE values on some datasets. 

In conclusion, our method demonstrated excellent performance in the ablation experiments, 

exhibiting lower errors and superior prediction capabilities compared to other approaches. This 

suggests that our proposed method is effective for time series forecasting and has significant potential 

for practical applications. 

4.4 Discussions 

4.4.1 Advantages and Applications 

Accurate forecasting of electricity load helps photovoltaic companies better plan their power 

generation, storage, and distribution strategies, thereby improving energy utilization efficiency and 

reducing waste. Precise load forecasting enables grid operators to better balance power supply and 

demand, avoiding shortages or surpluses, and thus enhancing grid stability and reliability. More 

precise predictions allow photovoltaic companies to be more competitive in electricity market bidding, 

as they can forecast generation more accurately and adjust their generation strategies based on market 

prices. 

4.4.2 Emission Reduction and Policy Implications 

A higher recall rate means that the model can more accurately identify events or scenarios that 

may lead to high carbon emissions, such as peak electricity usage periods or insufficient photovoltaic 

power generation. By predicting these high-emission events in a timely manner, photovoltaic 
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companies can implement corresponding emission reduction measures, such as adjusting generation 

plans, activating backup power sources, or encouraging users to save energy. Accurately identifying 

high-emission events also aids governments and environmental agencies in formulating more 

effective carbon emission policies and regulatory measures to promote the sustainable development 

of the photovoltaic industry. 

5. Conclusions 

Accurate power load prediction is essential for optimizing energy management and reducing 

carbon emissions in photovoltaic power generation. This study offers reliable and efficient prediction 

capabilities that can guide operational decisions for photovoltaic companies and promote sustainable 

energy use. The paper presents an advanced prediction model that integrates Long Short-Term 

Memory (LSTM), Generative Adversarial Networks (GAN), and Attention Mechanisms, enabling 

precise forecasts of power load, evaluation of carbon footprints, and development of emission 

reduction strategies for photovoltaic enterprises. 

5.1 Methodology: Model Integration and Training 

To achieve these goals, the researchers utilize the Gated Recurrent Unit (GRU) module and 

conduct training and evaluation on multiple datasets. They propose baseline models, including LSTM, 

GAN, and Attention Mechanisms, which are then combined in various ways to create LSTM-GAN, 

LSTM-Attention, and GAN-Attention models. The study includes metric comparison and ablation 

experiments to assess the predictive capabilities of these models using performance metrics. 

5.2 Experimental Results 

Performance Metrics: The experimental results indicate that the proposed method achieves over 95% 

accuracy, over 93% recall, over 92% F1 score, and over 92% AUC across multiple datasets. It 

consistently outperforms other methods in these metrics, demonstrating its accuracy and 

reliability for photovoltaic power load forecasting. 

Efficiency and Comparison: In terms of efficiency, the proposed method has fewer parameters, lower 

floating-point operations, shorter inference time, and reduced training time compared to other 

methods. For instance, on the Sun Dance dataset, it reduces parameters by 46.2%, FLOPs by 

48.4%, inference time by 49.7%, and training time by 37.6% compared to one of the comparison 

methods. Similar advantages are observed across other datasets. 

5.3 Ablation Experiments 

The researchers conduct ablation experiments to evaluate the performance of various 

combinations on different datasets, using metrics such as Mean Absolute Error (MAE), Mean 

Absolute Percentage Error (MAPE), Root Mean Square Error (RMSE), and Mean Squared Error 

(MSE). The results show that the method consistently achieves MAE below 19, MAPE below 6%, 

RMSE below 4, and MSE below 6, indicating its high accuracy in predicting target values. 

5.4 Future Works 
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This study also offers a viable solution for time series prediction challenges and has the potential 

for application in other fields, contributing to both scientific research and practical uses. However, 

despite the strong performance demonstrated, there are limitations and areas for improvement. One 

limitation is dataset adaptability; future research could explore various types and scales of datasets to 

evaluate the method's generalizability. Another area for enhancement is interpretability; further work 

could focus on explaining the model's predictions to improve user understanding and trust. 

In future studies, the researchers plan to refine and optimize the method to enhance its 

adaptability, interpretability, and explainability. They will also consider applying this method in other 

related fields, such as financial forecasting and traffic flow prediction, to expand its applicability and 

impact. 
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